рефераты рефераты
 

Главная

Разделы

Новости

О сайте

Контакты

 
рефераты

Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Бизнес-план
Биология
Бухучет управленчучет
Водоснабжение водоотведение
Военная кафедра
География и геология
Геодезия
Государственное регулирование и налогообложение
Гражданское право
Гражданское процессуальное право
Животные
Жилищное право
Иностранные языки и языкознание
История и исторические личности
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Логика
Логистика
Маркетинг
Масс-медиа и реклама
Математика
Медицина
Международное и Римское право
Уголовное право уголовный процесс
Трудовое право
Журналистика
Химия
География
Иностранные языки
Без категории
Физкультура и спорт
Философия
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Радиоэлектроника
Религия и мифология
Риторика
Социология
Статистика
Страхование
Строительство
Схемотехника
История
Компьютеры ЭВМ
Культурология
Сельское лесное хозяйство и землепользование
Социальная работа
Социология и обществознание

рефераты
рефераты

НАУЧНАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Химико-токсикологический анализ производных фенотиазина - (реферат)

Химико-токсикологический анализ производных фенотиазина - (реферат)

Дата добавления: март 2006г.

    Министерство Здравоохранения РФ
    Дальневосточный Государственный Медицинский Университет
    Кафедра органической и токсикологической химии
    Прочко Д. В.
    ХИМИКО-ТОКСИКОЛОГИЧЕСКИЙ АНАЛИЗ ПРОИЗВОДНЫХ ФЕНОТИАЗИНА
    Хабаровск, 1998
    Оглавление
    Введение 2
    Токсикологическое значение и метаболизм 2

Изолирование производных фенотиазина из биологического материала 3 Качественное обнаружение производных фенотиазина в экстракте 4 Количественное определение производных фенотиазина и их метаболитов 5

    Введение

В России и за рубежом, начиная с 1945 г. , после обнаружения фармакологической активности N-замещенных производных фенотиазина, было синтезировано большое число препаратов, обладающих нейролептическим, противогистаминным, холинолитическим, седативным, антиаритмическим и коронарорасширяющим действием.

В основе химической структуры данной группы препаратов лежит гетероциклическая система, состоящая из шестичленного гетероцикла тиазина, конденсированного с двумя ядрами бензола (рис. 1).

Препараты, производные фенотиазина, представляют собой сходные по химической структуре соединения, отличающиеся только заместителями в положении 2 и 10 фенотиазинового кольца, причем между структурой заместителей и фармакологическим действием проявляется четкая зависимость: если в 10 положении находится липофильная группировка, содержащая третичный азот во 2’ или 3’положении, то препарат оказывает нейролептическое, седативное и противоаллергическое действие. Если же эта группировка гидрофильная (карбоксильная группа), то препарат оказывает коронарорасширяющее и антиаритмическое действие.

    Токсикологическое значение и метаболизм

Препараты фенотиазинового ряда, так же как и другие психотропные, антигистаминные и сердечно-сосудистые средства, кроме собственно терапевтического эффекта, проявляют побочное и токсическое действие. Введение их в организм в дозах, превышающих терапевтические (медицинские ошибки, бытовые и суицидальные отравления), нередко приводит к летальным исходам. Описано большое количество отравлений этими соединениями, нередко в сочетании с другими лекарственными препаратами (барбитуратами, производными изоникотиновой кислоты, имизином, антибиотиками, инсулином и др. ).

Производные фенотиазина обладают кумулятивными свойствами и длительно выводятся из организма. Например, терапевтическая доза аминазина (50 мг) выводится из организма в течение 14-20 дней. Смертельные случаи могут наблюдаться при приемах обычных терапевтических доз.

Клиника течения отравлений производными фенотиазина во многом зависит от возраста, пола, дозы принятого лекарства и не является характерной и специфичной. Нехарактерна также и патологоанатомическая картина. Химическое исследование крови и мочи больных, а также внутренних органов и биологических жидкостей погибших могут оказать существенную помощь в диагностике отравления. Биотрансформация производных фенотиазина идет по основным типам метаболизма; сульфоокисление, деметилирование, образование N-оксида, гидроксилирование и т. д. Главным метаболитом, общим для всех производных фенотиазина, является сульфоксид (рис. 2).

Объектами исследования на производные фенотиазинового ряда являются желудок и кишечник с содержимым, печень, легкие, почки, кровь и моча.

В трупном материале производные фенотиазина и их метаболиты сохраняются (при температуре от–20 до +130С) до 3 месяцев. Консервирование материала этиловым спиртом увеличивает сохраняемость производных фенотиазина в трупном материале.

Изолирование производных фенотиазина из биологического материала По физико-химическим свойствам препараты, производные фенотиазина, представляют собой белые кристаллические порошки, растворимые или слаборастворимые в воде, хорошо растворимые в этиловом спирте (в виде солей), диэтиловом эфире и хлороформе (в виде оснований).

Изолирование аминазина, дипразина и их метаболитов рекомендуется производить спиртом, подкисленным до рН 2, 0-3, 0 10% раствором щавелевой кислоты, с последующей экстракцией основания эфиром при рН 13, 0 и реэкстракцией вещества в 0, 5 н раствор серной кислоты (изолирование по Е. М. Саломатину). Также изолирование производных фенотиазина можно проводить путем экстракции из биологического материала подкисленной водой, с последующей экстракцией органическим растворителем (диэтиловый эфир, хлороформ) из этого раствора, подщелоченного с помощью 25% раствора аммиака.

Качественное обнаружение производных фенотиазина в экстракте С растворами йодида висмута в йодиде калия и фосфорно-молибденовой кислоты производные фенотиазина дают аморфные осадки

С концентрированной серной кислотой возникает устойчивое пурпурно-красное окрашивание

С формалином и серной кислотой производные фенотиазина дают пурпурно-красное окрашивание, усиливающееся при стоянии

С концентрированной азотной кислотой возникает пурпурно-красное окрашивание (образование сульфоксида), которое быстро исчезает (образование сульфона) С 5% раствором золотохлористо-водородной кислоты аминазин (после 3-4 кратной обработки основания 0, 1 н. раствором HCl) выделяется темно-красный аморфный осадок, переходящий через 20-50 мин. в характерный кристаллический осадок. Кристаллы в виде палочек и сростков из них, напоминают снопы и сфероиды. Кристаллы оптически активны (погасание косое, угол погасания 20-300, удлинение кристаллов положительное). С реактивами Марки и Фреде тизерцин дает синевато-красную окраску; окраска у других производных фенотиазина— от красной до фиолетовой

С реактивом Манделина тизерцин дает красно-фиолетовую окраску; дипразин дает зеленую, переходящую в пурпурную окраску. Окраска у других производных фенотиазина— от красной до фиолетовой

Более надежный способ обнаружения производных фенотиазина в экстракте, а тем более для различения веществ друг от друга—обнаружение и разделение веществ с помощью хроматографии. Для этого на хроматографическую пластинку наносят каплю исследуемого раствора. Нанесенное пятно подсушивают на воздухе. Рядом наносят растворы известных препаратов, производных фенотиазина (“свидетели”) и вновь подсушивают пластинку. Затем пластинку вносят в камеру для хроматографии, насыщенную парами растворителя (смесь 25% раствора аммиака и этилового спирта в соотношении 1: 1, либо 25% раствора аммиака, этилацетата и ацетона 4: 90: 45). После хроматографирования пластинку проявляют 50% раствором серной кислоты в этиловом спирте. Затем пластинку помещают на 3-5 мин в сушильный шкаф, нагретый до 1000С. Проявившееся пятна сравнивают с пятнами “свидетелей” или по справочным значениям Rf.

Обнаружить производные фенотиазина можно также по УФ- и ИК-спектрам. Например, раствор тизерцина в этиловом спирте имеет максимумы поглощения при длине волны 255 и 310 нм, а аминазин при 254-255 нм. Основной метаболит—сульфоксидное производное фенотиазина имеет максимумы поглощения при длине волны 238-240, 273, 298 и 340 нм. Тизерцин в растворе 0, 1 н. соляной кислоты имеет максимум в области 251 и 302 нм. Дипразин, растворенный в 0, 01 н. растворе соляной кислоты, имеет максимумы поглощения при 249 и 300 нм; растворенный в смеси воды и этилового спирта (1: 1)—252 и 301 нм. В ИК-области спектра основание тизерцина (диск с бромидом калия) имеет основные пики при 1587, 1460, 1269 и 1446 см-1; дипразин имеет пики при 1459, 1222 и 757 см-1. Количественное определение производных фенотиазина и их метаболитов Фотоколориметрический метод определения основан на реакции с концентрированной серной кислотой. Фотометрирование проводят прил=508 нм в кювете 5, 105; эталон сравнения —контроль реактивов. Расчет содержания препаратов производится по калибровочному графику.

Спектрофотометрический метод основан на количественной оценке поглощения растворов препаратов в ультрафиолетовой области. Ультрафиолетовый спектр снимается в диапазоне длин волн 220-400 нм на СФ-4, СФ-4а и др. при концентрации 10 мкг/мл в пересчете на основание.

По этим методикам обнаруживается 53-60% препарата, добавленного к органам. Граница обнаружения 0, 2 мг, граница определения 0, 5 мг препарата в 100 г органов.

рефераты
© РЕФЕРАТЫ, 2012

рефераты