рефераты рефераты
 

Главная

Разделы

Новости

О сайте

Контакты

 
рефераты

Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Бизнес-план
Биология
Бухучет управленчучет
Водоснабжение водоотведение
Военная кафедра
География и геология
Геодезия
Государственное регулирование и налогообложение
Гражданское право
Гражданское процессуальное право
Животные
Жилищное право
Иностранные языки и языкознание
История и исторические личности
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Логика
Логистика
Маркетинг
Масс-медиа и реклама
Математика
Медицина
Международное и Римское право
Уголовное право уголовный процесс
Трудовое право
Журналистика
Химия
География
Иностранные языки
Без категории
Физкультура и спорт
Философия
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Радиоэлектроника
Религия и мифология
Риторика
Социология
Статистика
Страхование
Строительство
Схемотехника
История
Компьютеры ЭВМ
Культурология
Сельское лесное хозяйство и землепользование
Социальная работа
Социология и обществознание

рефераты
рефераты

НАУЧНАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Доклад: Поиски альтернативных хладагентов

Доклад: Поиски альтернативных хладагентов

Министерство образования Украины Западный территориальный отдел образования Лицей №32, секция химии Малая академия наук Доклад: Поиски альтернативных хладагентов Работа ученика 10-А класса лицея №32 Родионова Дмитрия Александровича Руководители: учитель химии - Гасанова Ирина Владимировна доцент кафедры теплофизики ОГАХ - Железный В.П. г. Одесса, 1997 г До начала 1930-ых годов основными хладагентами, применявшимися в холодильных системах, являлись аммиак, диоксид серы, метил хлорид и диоксид углерода. Каждое из указанных рабочих тел обладало весьма существенными технологическими и экологическими недостатками. Однако в конце 20-ых годов Томас Мидгрей открыл новое фторуглеродное семейство веществ, которое обладало практически оптимальными для хладагентов свойствами. С этим открытием холодильная промышленность получила возможность приступить к массовому выпуску разнообразной холодильной техники. Кроме того, галоидопроизводные углеводороды стали применяться для производства аэрозолей, пенополиуретанов, растворителей и средств пожаротушения. К началу 70-ых годов мировой рынок хлорфторуглеродов (ХФУ) принял огромные размеры. Поэтому, естественно, возник вопрос о конечной судьбе этих соединений, попадающих в большом количестве в атмосферу. Проводимые в это время исследования показали, что некоторых ХФУ необычайно долговечны в силу своей химической стабильности. Они могут существовать в атмосфере, не разрушаясь в течение длительного времени. Однако под действием излучения происходит их постепенное разложение с выделением атомов хлора, которые вступает во взаимодействие с озоном, уменьшая тем самым его количество в стратосфере. Как известно, стратосферный озон поглощает большую часть ультрафиолетовой радиации Солнца. Поэтому разрушение озонового слоя увеличивает уровень ультрафиолетовой радиации, попадающей на Землю, что приводит к возрастанию числа раковых заболеваний у людей и животных, гибели растений, сокращению биологических ресурсов океанов. Т.е. уменьшение концентрации озона в стратосфере является глобальной экологической опасностью для существования биологической формы жизни на Земле. Впервые в международном масштабе проблема регулирования производства и потребления озоноразрушающих ХФУ была поднята Венской Конвенцией по защите озонового слоя в 1985 г. Важным дальнейшим шагом в решении этой проблемы стало подписание Монреальского протокола в 1987 г., согласно которому по уровню влияния на озоновый слой Земли галоидопроизводные углеводороды были разделены на 3 группы: 1. ХФУ - хлорфторуглероды, которые обладают высоким потенциалом разрушения озонового слоя (Ozon Depleting Potention - ODP). Иногда используется термин «потенциал истощения озона». Хладагенты этой группы R11, R12, R113, R500, R502, R503 имеют ODP>0,05. Озоноразрушающая способность R11 была принята за единицу - OPD=1. 2. ГХФУ - гидрофторхлоруглероды, в молекулах которых содержится водород. Для этих веществ характерно меньшее время существования в атмосфере по сравнению с ХФУ и, как следствие, они оказывают меньшее влияние на разрушение озонового слоя ODP<0,55. Некоторые многокомпонентные рабочие тела, предлагаемые в качестве альтернативы ХФУ, содержат в своем составе ГХФУ, например, R22. 3. ГФУ - гидрофторуглероды. Эти вещества не содержат хлора, а состоят из атомов углерода, водорода и фтора. Они не разрушают озоновый слой (ODP=0) и имеют короткий период жизни в атмосфере. ГФУ считаются долгосрочной альтернативой ХФУ в холодильных системах. Примерами таких хладагентов являются R134a, R125, R152a и др. Несмотря на принятые мировым сообществом меры, проблема, вызванная эмиссией хладагентов в атмосферу, продолжала обостряться, и в ноябре 1992 г. в Копенгагене на очередной встрече стран-участниц Монреальского протокола была принята более жесткая редакция этого документа. Более того, на совещании подчёркивалось, что альтернативные (с точки зрения влияния на озоновый слой Земли) хладагенты должны обладать незначительным влиянием и на парниковый эффект, а само холодильное оборудование должно быть более эффективным, чем существующее. Тем самым проблема перевода холодильного оборудования на альтернативные хладагенты приобрела принципиально новые оттенки. Проблема разрушения озонового слоя Земли поставила перед учёными и промышленностью сложную задачу замены озоноактивных холодильных агентов на альтернативные. Проблема замены озоноактивных холодильных агентов на альтернативные оказалась более сложной и многоплановой, чем это могло показаться в 1987г. Она включает в себя: n изучение воздействия хладагентов на озоновый слой, влияние хладагента не парниковый эффект; n исследование токсичности и горючести; n изучение теплофизических свойств и термодинамической эффективности новых рабочих тел; n оценку теплообменных характеристик; n рассмотрение вопросов, связанных с совместимостью хладагентов с конструкционными материалами и растворимостью их в холодильных маслах; n проектирование нового холодильного оборудования; n разработку экономически выгодных технологий синтеза озонобезопасных хладагентов и освоение мощностей для их производства. Среди мер, принимаемых мировым сообществом, направленных на регулирование производства и потребления озоноразрушающих веществ, главным является требование полного отказа к 2000-му году от использования ХФУ во всех видах холодильного оборудования. Необходимость замены этих веществ, нашедших широкое применение в качестве теплоносителей, растворителей, рабочих тел холодильных установок, явилась причиной поиска альтернативных хладагентов, близких к ХФУ по своим физико-химическим свойствам. Проведение оценки эффективности использования новых рабочих тел в существующем и разрабатываемом холодильном оборудовании, а также освоение новых технологий с использованием озонобезопасных хладагентов возможно на основе информации о термодинамических свойствах этих веществ, наиболее надёжным средством получения которой остаётся эксперимент. Критерием оптимизации по энергетическим и экономическим факторам может служить TEWI (общий эквивалент теплового воздействия), методика расчёта которого широко используется при определении оптимального состава многокомпонентного рабочего тела. В реальной холодильной установке рабочим телом является маслохладоновый раствор, свойства которого значительно отличаются от свойств чистых хладагентов. В настоящее время предметом пристального внимания являются работы, посвященные изучению свойств масло-аммиачных растворов. Аммиак практически не растворяется в масле. Поэтому оно загрязняет коммуникационные трубопроводы и соединения, осаждается на поверхности конденсатора и труб охлаждения, уменьшая теплопередачу. При температурах нагнетания свыше 140° возможно нарушение смазки компрессора в результате образования толстого слоя нагара на клапанах. Смесь из свободного водорода, аммиака и воздуха может вызвать вспышку масла и взрыв. Известно, что фирмой Sulrer Escher Wyss было синтезировано масло, растворимое в аммиаке. Растворимость масла в аммиаке исключает образование на теплообменных поверхностях плёнки, что повышает коэффициент теплоотдачи до a=9100 Вт/м2 *К (при нерастворимом масле a=2700 Вт/м2*К). Наиболее часто в качестве растворимого в аммиаке масла предлагаются синтетические масла типа ПАГ (полиоксиалкиленгликоль) (см. патент США 5037570). ПАГ растворимы в аммиаке при низких температурах, обладают хорошей вязкостно-температурной зависимостью. Однако их характерными недостатками являются сравнительно высокая критическая температура расслоения маслохладонового раствора, а также недостаточная противоизносные свойства и термоокислительная стабильность. Сотрудниками Одесской Государственной Академии Холода и Института биологической химии и нефтехимии Украины предложено новое синтетическое соединение, которое может быть использовано в качестве растворимого в R717 холодильного масла - ХМРА-1. Данное масло обладает в 1,85 раза более высокой термоокислительной стабильностью и в 1,9 раза более высокими противоизносными свойствами по сравнению с маслами на основе ПАГ. Кроме того, оно частично растворяется в минеральных нефтяных маслах, что упрощает решение отдельных эксплуатационных проблем. Основные теплофизические свойства масла ХМРА-1 приведены в таблице 1.1. Таблица 1.1
T, KP, Па

r, кг/м3

h, Па*сСр, кДж/кг*К
2505,61095,24305,001,712
26011,91087,81059,001,724
27024,11080,4343,2001,772
28046,41073,0137,7001,803
29085,41065,665,3501,833
300150,91058,235,4101,863
310256,91050,921,3201,873
320423,31043,519,9801,923
330676,41036,19,8171,954
3401051,51028,77,2871,984
3501093,91021,35,6662,015
Аммиак получил маркировку хладагент R717. Рассмотрим особенности строения и свойств аммиака. В образовании химических связей в молекуле аммиака принимают участие 3 неспаренных атома азота и электроны трёх атомов водорода. Два электрона атома азота остаются неподелёнными.
Доклад: Поиски альтернативных хладагентов
H . .. :N + 3H. = :N:H . .. H В образовании связей участвуют как 2p-электроны, так и 2s-электроны, т.е. имеет место гибридизация атомных орбит, близкая к тетраэдрической гибридизации в 4-валентном углероде. Атомы водорода располагаются в трёх вершинах тетраэдра, центр которого занят атомом азота. Угол между связями H-N-H равен 108°, т.е. весьма близок к тетраэдрическому. Дипольный момент молекулы аммиака, равный 1,43D, создаётся в основном всё же не полярностью связей, а тем, что гибридная орбита вытянута в сторону от ядра вершине тетраэдра, не занятого атомами водорода. Поляризуемость молекулы аммиака равна 22,6*10-25 см3 . Благодаря отсутствию неспаренных электронов аммиак диамагнитен. Неподелённая пара электронов не гибридной основе создаёт у молекулы аммиака способность к образованию водородной связи. Это обстоятельство, а также значительная полярность молекул аммиака вызывает весьма сильное взаимодействие между ними, вследствие чего физические свойства аммиака имеют ряд аномалий по сравнению с однотипными соединениями (PH3, SbH3, AsH 3): температуры плавления и кипения относительно велики, теплота испарения велика. Собственная электролитическая диссоциация аммиака: 2NH3 = NH4 + + NH2- совершенно ничтожна. Жидкий аммиак фактически не проводит электрического тока. Удельная электропроводность 3,0*10 8 ом-1. Хладагент R717 используется уже много лет в крупных холодильных установках. Аммиак не обладает озоноразрушающей способностью и не имеет прямого вклада в увеличение парникового эффекта. Энергетическая эффективность использования R717 в холодильном оборудовании столь же высока, как и при применении R22, а ряде случаев даже превышает её. Кроме того, стоимость аммиака значительно ниже стоимости галоидопроизводных углеводородов. По сравнению с галоидопроизводными углеводами, R717 имеет более высокий коэффициент теплоотдачи. В силу резкого запаха появление течи в холодильной системе легко обнаруживается оператором. Именно по этой причине R717 нашёл широкое применение в крупных холодильных установках. Растворимость масла в аммиаке исключает образование плёнки масла на теплообменных поверхностях. R717 имеет чрезвычайно высокое значение теплоты испарения (при температуре кипения 1369,7 Дж/кг), вследствие чего сравнительно небольшой поток циркулирующей массы. Дополнительные сложности по созданию холодильного оборудования вызывает высокая активность по отношению к меди и медным сплавам. В силу высокой токсичности и горючести аммиака сварные соединения подлежат тщательному контролю. Электропроводность R717 затрудняет создание полугерметичных и герметичных компрессоров. Разработанное в ОГАХ новое синтетическое масло по сравнению с патентом США №5037570 обладает более высокими противоизносными свойствами, лучшей термоокислительной способностью и более низкой критической температурой расслоения. Целью работы является комплексное экспериментально-расчётное исследование равновесий бинарной смеси R717-ХМРА с последующей разработкой таблиц термических свойств этой смеси. Научная новизна. Получены экспериментальные данные о термических свойствах раствора R717-ХМРА на линии жидкость-пар в интервале температур 281,736..................383,362 К, а также разработаны таблицы термических свойств раствора в состоянии фазового равновесия. Для исследования фазовых равновесий масло-аммиачной смеси был выбран статический метод. Эксперимент проводился в установке, реализующей метод пьезометра постоянного объёма. Проводились измерения давления при определённых температурах в момент наступления термодинамического равновесия в зависимости от концентрации масла и аммиака в масло-аммиачной смеси. В ходе эксперимента изучалась динамика установления термодинамического равновесия в зависимости от соотношения концентраций масла и аммиака в маслохладоновой смеси. Результаты эксперимента приведены в таблицах 1.2, 1.3 Таблица 1.2 Доклад: Поиски альтернативных хладагентов Таблица 1.3 Доклад: Поиски альтернативных хладагентов
Т, К360380400
ХР, БарР, БарР, Бар
0,6042,968762,156386,8990
0,6543,944863,845489,7001
0,7044,850964,428092,3450
0,7545,610666,797794,6872
0,8046,176467,887196,6288
0,8546,603368,767698,2698
0,9047,045969,660999,9147
0,9547,573170,6663101,7068
1,0047,650371,0188102,5675
На основе полученных экспериментальных данных сотрудники кафедры теплофизики ОГАХ построили диаграммы и таблицы, позволяющие произвести теоретические расчёты по предсказанию свойств смеси R717-ХМРА в различных условиях. Доклад: Поиски альтернативных хладагентов Доклад: Поиски альтернативных хладагентов Анализ проведённого расчёта позволяет сделать вывод о том, что присутствие даже незначительного количества масла в холодильной системе оказывает существенное влияние на энергетическую эффективность холодильного цикла (до 4,5% на холодильный коэффициент). Наличие масла в аммиаке влияет как на адиабатическую работу сжатия, так и на холодопроизводительность (особенно объёмную ...). Чем меньше температура в испарителе, тем большее влияние на эффективность оказывает масло. Это обстоятельство можно объяснить температурной и концентрационной зависимостью теплоты испарения маслоаммиачной смеси и большой разницей в теплотах испарения её компонентов.
рефераты
© РЕФЕРАТЫ, 2012

рефераты