рефераты рефераты
 

Главная

Разделы

Новости

О сайте

Контакты

 
рефераты

Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Бизнес-план
Биология
Бухучет управленчучет
Водоснабжение водоотведение
Военная кафедра
География и геология
Геодезия
Государственное регулирование и налогообложение
Гражданское право
Гражданское процессуальное право
Животные
Жилищное право
Иностранные языки и языкознание
История и исторические личности
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Логика
Логистика
Маркетинг
Масс-медиа и реклама
Математика
Медицина
Международное и Римское право
Уголовное право уголовный процесс
Трудовое право
Журналистика
Химия
География
Иностранные языки
Без категории
Физкультура и спорт
Философия
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Радиоэлектроника
Религия и мифология
Риторика
Социология
Статистика
Страхование
Строительство
Схемотехника
История
Компьютеры ЭВМ
Культурология
Сельское лесное хозяйство и землепользование
Социальная работа
Социология и обществознание

рефераты
рефераты

НАУЧНАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Определение потерь напора

Определение потерь напора

Определение потерь напора

При движении жидкости в трубопроводе часть энергии потока

(гидродинамического напора [pic] расходуется на преодоление гидравлических

сопротивлений.

Последние бывают двух видов:

1) сопротивления по длине [pic], пропорциональные длине потока;

2) местные сопротивления [pic], возникновение которых связано с

изменением направления или величины скорости в том или ином сечении потока.

К местным сопротивлениям относят внезапное расширение потока, внезапное

сужение потока, вентиль, кран, диффузор и т. д.

Величина общих потерь энергии (напора) учитывается дополнительным членом

[pic], в уравнении Бернулли для реальной жидкости.

Определение величины потерь энергии (напора) при движении жидкости

является одной из основных задач гидродинамики.

При движении жидкости в прямой трубе потери энергии определяются формулой

Дарси — Вейсбаха

[pic]=[pic] ; (2-27)

где [pic]—потери напора по длине, м.

Эту же потерю напора можно выразить в единицах давления:

[pic] [pic] (2-28)

где [pic]—потери давления, Па; [pic]—потери напора, м;[pic]—коэффициент

сопротивления трения по длине; l- длина трубы, м; d—диаметр трубы, м;

v—средняя скорость движения жидкости в выходном сечении трубы, м/с: g-

ускорение силы тяжести, м/с2; р—плотность жидкости (газа), кг/м3.

Коэффициент сопротивления трения по длине

В гидравлических расчетах потерь напора по формуле Дарси — Вейсбаха (2-

27) наиболее сложным является определение величины коэффициента

сопротивления трения по длине.

Многочисленными опытами установлено, что в общем случае коэффициент

сопротивления трения К зависит от числа Рейнольдса [pic] и относительной

шероховатости [pic] стенок канала, т. е. [pic].

Для частных случаев движения жидкости имеем следующие зависимости для

определения коэффициента сопротивления трения [pic].

При ламинарном движении коэффициент сопротивления трения не зависит от

относительной шероховатости, а является функцией только числа Рейнольдса и

определяется по формуле Пуазейля:

[pic] ; (2-29)

При турбулентном движении в гидравлически гладких каналах (трубах) в

диапазоне чисел Рейнольдса 15•103<[pic]<80• 103 коэффициент сопротивления

трения [pic] также не зависит от относительной шероховатости стенок и

является функцией числа Рейнольдса. Он определяется по формуле Блазиуса:

[pic] (2.30)

В широком диапазоне чисел Рейнольдса для переходной области сопротивления

коэффициент сопротивления [pic], уже является функцией двух величин: числа

Рейнольдса и относительной шероховатости и может определяться, например, по

формуле Альтшуля:

[pic] (2-30)

Границы этой области сопротивления для круглых труб различной

шероховатости определяются следующим неравенством:

[pic]. (2-32)

При этом условии ламинарная пленка начинает частично разрушаться, крупные

выступы шероховатости уже оголены, а мелкие еще скрыты в толще

сохранившейся ламинарной пленки.

В квадратичной области сопротивления, когда ламинарная пленка полностью

исчезает и все выступы шероховатости оголены, на величину коэффициента

сопротивления трения [pic] число Рейнольдса уже не оказывает никакого

влияния, и, как показывает опыт, в этом случаев является функцией только

относительной шероховатости, т. е.

[pic] ; (2-33)

Для определения коэффициента сопротивления в этой области может быть

использована формула Б. Л. Шифринсона

[pic]; (2-34)

Для неновых стальных и чугунных водопроводных труб коэффициент

сопротивления трения К можно определить по следующим формулам Ф. А.

Шевелева:

при [pic]<1,2 м/с

[pic]; (2-35)

при [pic]>1,2 м/с

[pic] ; (2-36)

здесь d — диаметр трубы; [pic] — средняя скорость движения воды в трубе.

Местные потери напора и коэффициент местного сопротивления

Местные потери напора принято выражать в долях от скоростного напора. Их

определяют по формуле Вейсбаха:

[pic] ; (2-37)

где [pic] — коэффициент местного сопротивления, зависящий от вида местного

сопротивления и определяемый опытным путем (для турбулентного режима

течения); v— скорость за местным сопротивлением.

Значения видов местных сопротивлений приводятся в таблицах.

Вычисление полной потери напора

Полная потеря напора выражается суммой потерь напора по длине и на

местные сопротивления:

[pic] ; (2-38)

где [pic] -сумма местных потерь напора, сочетание которых в трубопроводе

может быть различным в зависимости от назначения последнего.

Подставляя в уравнение (2-38) значение [pic] из формулы (2-27), получаем

удобную для практических расчетов формулу полной потери напора:

[pic](2-39)

рефераты
© РЕФЕРАТЫ, 2012

рефераты