рефераты рефераты
 

Главная

Разделы

Новости

О сайте

Контакты

 
рефераты

Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Бизнес-план
Биология
Бухучет управленчучет
Водоснабжение водоотведение
Военная кафедра
География и геология
Геодезия
Государственное регулирование и налогообложение
Гражданское право
Гражданское процессуальное право
Животные
Жилищное право
Иностранные языки и языкознание
История и исторические личности
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Логика
Логистика
Маркетинг
Масс-медиа и реклама
Математика
Медицина
Международное и Римское право
Уголовное право уголовный процесс
Трудовое право
Журналистика
Химия
География
Иностранные языки
Без категории
Физкультура и спорт
Философия
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Радиоэлектроника
Религия и мифология
Риторика
Социология
Статистика
Страхование
Строительство
Схемотехника
История
Компьютеры ЭВМ
Культурология
Сельское лесное хозяйство и землепользование
Социальная работа
Социология и обществознание

рефераты
рефераты

НАУЧНАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Математические модели электромеханических систем в пространстве состояний

Математические модели электромеханических систем в пространстве состояний

2. Математические модели электромеханических систем в пространстве

состояний

Способы получения уравнений состояния реальных физических объектов

ничем не отличаются от способов описания этих объектов с помощью

дифференциальных уравнений. Уравнения состояния записываются на основе

физических законов, положенных в основу работы объекта.

Рассмотрим электромеханическую систему, состоящую из двигателя

постоянного тока с независимым возбуждением, работающего на инерционную

нагрузку с вязким трением. Управляющим воздействием для двигателя считаем

напряжение на якоре U(t), выходной координатой, угол поворота вала

двигателя y(t)=((t). Уравнение электрической цепи имеет вид

[pic],

где [pic] - противо ЭДС, [pic] - угловая скорость вала двигателя, [pic] -

единый электромагнитный коэффициент.

Уравнение моментов будет иметь следующий вид

[pic],

где [pic], J - момент инерции нагрузки, приведенный к валу двигателя, f -

коэффициент вязкого трения.

Выберем следующие переменные состояния: х1=i, x2=(, x3=(.

Получим

[pic],

[pic].

Запишем эти уравнения относительно переменных [pic], [pic], [pic]

[pic],

[pic],

[pic],

[pic].

Запишем матричные уравнения

[pic],

[pic],

где

[pic], [pic], [pic].

Рассмотрим структурную схему электромеханической системы с двигателем

постоянного тока, работающего на инерционную нагрузку с вязким трением.

[pic]

Рис. 2.1. Структурная схема электромеханической системы с двигателем

постоянного тока

Запишем уравнение состояния для механической системы, представляющей

собой груз массой m, подвешенный на пружине и соединенный с гидравлическим

демпфером. К грузу приложена сила P(t), выходная переменная перемещения

x(t), управляющие воздействия U(t)=P(t). Уравнение движения груза получаем

из уравнения равновесия сил

[pic],

где [pic] - инерционная сила, f - коэффициент вязкого трения, [pic] - сила

сопротивления демпфера, [pic] - сила сопротивления пружины.

Выбираем в качестве переменных состояния x(t) и [pic] - перемещение и

скорость перемещения соответственно.

[pic]

Рис. 2.2. Механическая система, включающая в своем составе пружину,

массу и вязкий демпфер

Так как дифференциальное уравнение имеет второй порядок, то и

количество переменных состояния будет равно двум. Исходное уравнение

движения груза можно записать в виде двух уравнений

[pic]

где U(t)=P(t) - управляющее воздействие.

Добавим к этим уравнениям следующее уравнение выхода

[pic].

Эти уравнения представляют собой уравнения состояния приведенной

механической системы. Запишем эти уравнения состояния в матричном виде

[pic],

[pic].

Запишем это уравнение в другом виде

[pic],

[pic],

где [pic], [pic], [pic], [pic], [pic].

С данным уравнением состояния можно сопоставлять следующую структурную

схему, где двойными линиями показаны векторные переменные.

[pic]

Рис. 2.3. Структурная схема

Пример: Рассмотрим электрическую цепь и получим уравнение состояния

RLC цепи

[pic]

Рис. 2.4. RLC цепь

Динамическое поведение этой электрической системы полностью

определяется при t(t0, если известны начальные значения: i(t0), ec(t0) и

входное напряжение e(t) при t(t0, следовательно, эта система полностью

определяется переменными состояния i(t) и ec(t). При указанных переменных

состояния i(t) и ec(t) имеем следующие уравнения

[pic]

где [pic], [pic].

Введем следующие обозначения

[pic]

В соответствии с этими обозначениями получаем

[pic]

причем [pic].

Следовательно, для электрической цепи запишем эту систему в векторно-

матричном виде

[pic],

[pic].

Запишем матричные уравнения

[pic],

[pic],

где [pic], [pic], [pic], [pic].

рефераты
© РЕФЕРАТЫ, 2012

рефераты