рефераты рефераты
 

Главная

Разделы

Новости

О сайте

Контакты

 
рефераты

Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Бизнес-план
Биология
Бухучет управленчучет
Водоснабжение водоотведение
Военная кафедра
География и геология
Геодезия
Государственное регулирование и налогообложение
Гражданское право
Гражданское процессуальное право
Животные
Жилищное право
Иностранные языки и языкознание
История и исторические личности
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Логика
Логистика
Маркетинг
Масс-медиа и реклама
Математика
Медицина
Международное и Римское право
Уголовное право уголовный процесс
Трудовое право
Журналистика
Химия
География
Иностранные языки
Без категории
Физкультура и спорт
Философия
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Радиоэлектроника
Религия и мифология
Риторика
Социология
Статистика
Страхование
Строительство
Схемотехника
История
Компьютеры ЭВМ
Культурология
Сельское лесное хозяйство и землепользование
Социальная работа
Социология и обществознание

рефераты
рефераты

НАУЧНАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Сверхтвердый наноалмазный композит инструментального назначения

Сверхтвердый наноалмазный композит инструментального назначения

Сверхтвердый наноалмазный композит инструментального назначения

А. Н. Соколов, А. А. Шульженко, В. Г. Гаргин

Получение поликристаллов и композитов на основе алмазных порошков с твердостью по Виккерсу HV выше 50 ГПа имеет большое практическое значение. Указанные материалы применяются для механической обработки точением цветных металлов и их сплавов.

Известно, что высокий уровень физико-механических свойств алмазных порошков определяется высокодисперсной структурой зерен поликристалла, что, в частности, непосредственно вытекает из экспериментально установленной зависимости Холла—Петча (1) твердости и предела текучести от размера зерна [1].

 Сверхтвердый наноалмазный композит инструментального назначения

где HV — твердость,

Отсюда следует, что для получения качественного поликристаллического материала с плотной, однородной, мелкозернистой структурой перспективно использование алмазных порошков нанометрического диапазона. При соответствующих условиях в нанодис-персном поликристалле возможна реализация уникального комплекса механических свойств, например, сочетание очень высоких твердости и стойкости к растрескиванию.

При разработке технологий получения новых сверхтвердых материалов с использованием компонентов нанометрического диапазона важной проблемой является сохранение нанодисперсного состояния материала в процессе спекания. Кроме того, необходимо помнить о высокой структурной чувствительности механических свойств, что особенно остро проявляется при использовании наноматериалов. Как известно [1], особенностями структуры таких материалов являются малая величина кристаллитов и, соответственно, большая объемная доля границ, приграничных областей и тройных стыков нанозерен; высокий уровень внутренних напряжений; наличие примесей и других дефектов, присущих самим наноматериалам и привнесенным в процессе весьма сложной технологии их получения.

Спекание нанопорошков алмаза

В работах [2—4] показано, что различные виды воздействия на исходные нанопорошки алмазов и подготовленную шихту: химическое модифицирование поверхности частиц в сочетании с вакуумной очисткой и дегазацией, предварительная механическая активация, например, методом холодного изостатическо-го прессования, а также использование активирующих процесс спекания добавок — позволяет улучшить физико-механические свойства спеченных материалов.

Наиболее эффективным подходом к улучшению физико-механических свойств поликристаллов алмаза на основе нанопорошков является поиск оптимального режима спекания шихты, содержащей активирующие добавки, выполняющие роль как растворителей углерода (Со, Ni, Fe, их сплавы и др.) так и ингибиторов роста зерен. При этом шихта должна пройти предварительный этап механической активации.

Целью данной работы было исследование влияния условий спекания на формирование структуры и свойства наноалмазных композитов.

В качестве исходного материала использовали смеси нанопорошков алмаза статического синтеза АСМ5 0,1/0 и АСМ5 0,5/0, не подвергавшиеся предварительной химической очистке и термообработке в вакууме, фракционный и примесный состав которых соответствовал ДСТУ 3292-95 [5]. В качестве активирующих процесс спекания добавок были выбраны растворители углерода на основе кобальта, которые в исходной шихте составляли 5—15%(масс.).

Подготовленную смесь активировали методом многократного изостатического прессования при давлениях от 1,1 до 5,0 ГПа. Спекание проводили в аппарате высокого давления (АВД) типа «тороид» с диаметром центрального углубления 13 мм, рассчитанном на проведение процессов при давлениях до 8,0 ГПа. Спекание шихты проводили при давлении 8,0 ГПа, температуре 2000 К, продолжительность спекания составляла 20—30 с.

Структура алмазных композитов

Рассмотрим некоторые особенности структуры полученных композитов. В образцах, полученных при спекании шихты, содержащей 15%(масс.) СоО, даже в микрообъемах не выявляется неалмазный углерод. На микроэлектронограммах от различных участков образцов видны единичные точечные отражения, которые могут быть отнесены к кобальту и(или) его соединениям (рис. 1).

Зеренная микроструктура образцов однородна по всему объему. Основной составляющей микроструктуры являются зерна размерами 70—100 нм. На рис. 2 представлены типичные электронно-микроскопические изображения зеренной структуры образцов. Нано-дисперсные зерна имеют в основном форму многогранников с сильно сглаженными вершинами. На светлопольных электронно-микроскопических изображениях между зернами всех размеров выявляются как тонкие линейные границы, так и широкие изгиб-ные контуры (см. рис. 2, а). На темнопольных изображениях границы между сростками зерен видны часто в виде тонких линий. В объеме зерен всех размеров выявляются также изгибные контуры, что указывает на высокий уровень напряжений в них.

Установленные особенности структуры исследованных образцов позволяют заключить, что в условиях спекания нанодисперсного порошка алмаза происходят процессы структурных превращений как на границах, так и в объеме частиц. Поскольку между зернами имеются сплошные границы, то это является свидетельством того, что при спекании проходят процессы диффузионного массопереноса. Так как диффузионная подвижность алмазного углерода низка в исследованных термодинамических условиях спекания (8 ГПа, 2000 К), то можно предположить, что диффузионный массоперенос алмаза обусловлен главным образом присутствием жидкой фазы.

 Сверхтвердый наноалмазный композит инструментального назначения

Рис. 1. Типичная микроэлектронограмма образцов, спеченных из шихты с 15%(масс.) СоО.

Область площадью -0,5 мкм2

Таблица

Физико-механические свойства сверхтвердых поликристаллов и композита

Материал


рефераты
© РЕФЕРАТЫ, 2012

рефераты