рефераты рефераты
 

Главная

Разделы

Новости

О сайте

Контакты

 
рефераты

Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Бизнес-план
Биология
Бухучет управленчучет
Водоснабжение водоотведение
Военная кафедра
География и геология
Геодезия
Государственное регулирование и налогообложение
Гражданское право
Гражданское процессуальное право
Животные
Жилищное право
Иностранные языки и языкознание
История и исторические личности
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Логика
Логистика
Маркетинг
Масс-медиа и реклама
Математика
Медицина
Международное и Римское право
Уголовное право уголовный процесс
Трудовое право
Журналистика
Химия
География
Иностранные языки
Без категории
Физкультура и спорт
Философия
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Радиоэлектроника
Религия и мифология
Риторика
Социология
Статистика
Страхование
Строительство
Схемотехника
История
Компьютеры ЭВМ
Культурология
Сельское лесное хозяйство и землепользование
Социальная работа
Социология и обществознание

рефераты
рефераты

НАУЧНАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Особенности свойств аморфного углеродного материала как носителя электродных катализаторов для топливных элементов

Особенности свойств аморфного углеродного материала как носителя электродных катализаторов для топливных элементов

Особенности свойств аморфного углеродного материала как носителя электродных катализаторов для топливных элементов

Ч. Н. Варнаков, А. П. Козлов, С. К. Сеит-Аблаева, А. И. Романенко, Н. Т. Васенин, В. Ф. Ануфриенко, 3. Р. Исмагилов, В. Н. Пармой

Характеристика аморфного углеродного материала (АУМ) только по элементному составу и данным, полученным на основе анализа изотерм адсорбции азота, не является достаточной. Показано, что в процессе образования АУМ, в частности из ароматических предшественников с различными функциональными группами в условиях термокаталитического синтеза при различных времени и температуре карбонизации, образуется углеродный материал, обладающий как одномерной, так и трехмерной проводимостью.

Одномерная проводимость, возможно, связана с образованием карбина, как промежуточной стадии образования АУМ при температурах порядка 700 °С, либо при температуре 900 °С и небольшом (до 15 минут) времени карбонизации. Предполагается, что одномерная проводимость может влиять на выходную мощность топливного элемента, если АУМ используется в качестве носителя катализатора катодной мембраны.

Ранее методами электронной спектроскопии высокого разрешения (HRTEM) и дифракции электронов было показано [1], что аморфный углеродный материал, в отличие от активированного угля, волокнистых углеродных материалов и наноуглерода, состоит из структуры, сформированной графитоподобными слоями (графемами) моноатомной толщины (порядка 0,3 нм). Аналогичные результаты получены и при рентгенографических исследованиях образцов, приготовленных из ароматических соединений. Когда толщина поверхностного слоя приближается к молекулярным размерам, наночастица будет более рыхлой по сравнению с объемной конденсированной фазой, причем вся наночастица будет неоднородной [2]. Эта неоднородность дает разнообразие свойств углеродного материала, что может проявляться как в различных парамагнитных свойствах углеродного материала, так и в разной его проводимости.

В таблице представлены характеристики образцов АУМ, полученных из ароматических соединений с различными функциональными группами методом термокаталитического синтеза (карбонизация при 700—800 °С в присутствии щелочи — гидроксида натрия или калия, либо их эквимолярной смеси) [1, 3]. Элементный анализ образцов, выполненный по стандарту ISO 625-75 на приборе CarloErba с CHN анализатором, показал наличие углерода (89—90%(масс.)), водорода (0,5—0,6%(масс.)) и кислорода (остальное). Азот и сера не были обнаружены. Удельная поверхность по БЭТ, объем и поверхность микропор полученных образцов АУМ определяли на установке ASAP-2400 (Micromeritics) по адсорбции азота при 77 К. Перед измерениями проводили предварительную тренировку образцов при 300 °С и остаточном давлении менее 0,001 мм рт.ст. до прекращения газовыделения. После тренировки до измерения изотермы адсорбции контакт с атмосферой был исключен. Изотермы адсорбции азота записывали в диапазоне относительных давлений от 0,005 до 0,995 и проводили их стандартную обработку с расчетом суммарной поверхности методом БЭТ, объема микропор с размером до 2 нм и поверхности мезопор, остающейся после заполнения микропор. Полученные образцы АУМ можно представить, подобно изомерам, как гомологический ряд одного состава с разной структурой поверхности [2]. Одной из характерных особенностей этого гомологического ряда АУМ является наличие более 80% микропор.

Полученные образцы АУМ были испытаны в качестве носителей платиновых катализаторов для катодов топливных элементов с протонообменной мембраной. Лучшие показатели по выходной мощности топливного элемента получены на АУМ-1 — образце из нефтяного кокса [4]. Для этого образца АУМ характерна большая интенсивность спектра ЭПР, достигающая 1020 спин/г.

Для сравнения в качестве носителей были использованы углеродные нановолокнистые (УНВ) материалы различного строения и стандартный носитель Vulcan XC-72R. Результаты тестирования показали [4], что при плотности тока 100 мА/см2 и содержании платины от 0,02 до 0,09 мг/см2 катодный катализатор на основе УНВ, независимо от структуры носителя, имеет более низкие вольтамперные характеристики по

Таблица

Характеристики поверхности образцов АУМ


рефераты
© РЕФЕРАТЫ, 2012

рефераты