рефераты рефераты
 

Главная

Разделы

Новости

О сайте

Контакты

 
рефераты

Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Бизнес-план
Биология
Бухучет управленчучет
Водоснабжение водоотведение
Военная кафедра
География и геология
Геодезия
Государственное регулирование и налогообложение
Гражданское право
Гражданское процессуальное право
Животные
Жилищное право
Иностранные языки и языкознание
История и исторические личности
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Логика
Логистика
Маркетинг
Масс-медиа и реклама
Математика
Медицина
Международное и Римское право
Уголовное право уголовный процесс
Трудовое право
Журналистика
Химия
География
Иностранные языки
Без категории
Физкультура и спорт
Философия
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Радиоэлектроника
Религия и мифология
Риторика
Социология
Статистика
Страхование
Строительство
Схемотехника
История
Компьютеры ЭВМ
Культурология
Сельское лесное хозяйство и землепользование
Социальная работа
Социология и обществознание

рефераты
рефераты

НАУЧНАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Эволюционные процессы в мегамире(Звезды)

Эволюционные процессы в мегамире(Звезды)

«Псковский государственный политехнический институт»

КОНТРАЛЬНАЯ РАБОТА ПО ПРЕДМЕТУ: КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ

на тему: Эволюционные процессы в мегамире (Звезды).

Выполнил студент:

Проверил

Псков 2010

СОДЕРЖАНИЕ


1.Необратимость эволюции звезд

1.1Межзвездная среда

1.2 Понятие звездной эволюции

2. Диалектика «борьбы» между гравитацией и температурой в течении «жизни» звезд

2.1 Процесс звездообразования

2.2 Звезда - плазменный шар

2.3 Звезда как саморегулирующаяся система

3. Звездные «останки»: белые карлики, нейтронные звезды, черные дыры

3.1 Белые карлики

3.2 Нейтронные звезды

3.3 Черные дыры

Список использованной литературы

1.Необратимость эволюции звезд.


1.1 Межзвездная среда


Большую роль в динамике звездных процессов, в звездной эволюции играет межзвездная среда, тесно связанная со звездами: в межзвездной среде они рождаются, а «умирая», отдают ей свое вещество. Таким образом, между звездами и межзвездной средой происходит кругооборот вещества: межзвездная среда > звезды > межзвездная среда. В ходе такого кругооборота межзвездная среда обогащается создаваемыми в недрах звезд химическими элементами. Около 85% всех химических элементов тяжелее гелия возникло на заре нашей Галактики, примерно 15 млрд лет назад. В то время происходил интенсивный процесс звездообразования, а время жизни, эволюции массивных звезд было относительно коротким. Лишь 10-13% химических элементов (тяжелого гелия) имеют возраст менее 5 млрд лет.

Хотя даже в мощные оптические телескопы мы видим в нашем галактическом пространстве лишь звезды и разделяющую их темную «бездну», на самом деле межзвездное галактическое пространство не является абсолютной пустотой, оно заполнено материей (веществом и полем).

Вопрос только в том, что каковы формы этой материи, в каком состоянии здесь находятся вещество и поле.

Межзвездная среда состоит на 90% из межзвездного газа, который довольно равномерно перемешан с межзвездной пылью (около 1% массы межзвездной среды), а также космических лучей, пронизывается межзвездными магнитными полями, потоками нейтрино, гравитационного и электромагнитного излучения. Все компоненты межзвездной среды влияют друг на друга (космические лучи и электромагнитное поле ионизируют и нагревают межзвездный газ, магнитное поле определяет движение газа и др.) Проявляет себя межзвездная среда в ослаблении, рассеянии, поляризации света, поглощении света в отдельных линиях спектра, радиоизлучении, инфракрасном, рентгеновском и гамма-излучениях, через оптическое свечение некоторых туманностей и др.

Основная составляющая межзвездной среды - межзвездный газ, который, как и вещество звезд, состоит главным образом из атомов водорода (около 90% всех атомов) и гелия (около 8%); 2% представлены остальными химическими элементами (преимущественно кислород, углерод, азот, сера, железо и др.). Общая масса молекулярного газа в нашей Галактике равна примерно 4 млрд масс Солнца, что составляет примерно 2% всей массы вещества Галактики. Из этого вещества ежегодно образуется примерно 10 новых звезд!

Межзвездный газ существует как в атомарном, так и в молекулярном состоянии (наиболее плотные и холодные части молекулярного газа). При этом он обычно перемешан с межзвездной пылью (которая представляет собой твердые мельчайшие тугоплавкие частицы, содержащие водород, кислород, азот, силикаты, железо), образуя газопылевые образования, облака. Революционное значение для космохимии имело открытие в газопылевых облаках различных органических соединений - углеводородов, спиртов, эфиров, даже аминокислот и других соединений, в которых молекулы содержат до 18 атомов углерода.

К настоящему времени в межзвездном газе открыто свыше 40 органических молекул. Чаще всего они встречаются в местах наибольшей концентрации газопылевого вещества. Естественно возникает предположение, что органические молекулы из межзвездных газопылевых облаков могли способствовать возникновению простейших форм жизни на Земле.

Газопылевые облака находятся под воздействием различных сил (гравитационных, электромагнитных, ударных волн, турбулентности и др.), которые либо замедляют, либо ускоряют неизбежный процесс их гравитационного сжатия и постепенного превращения в протозвезды.

1.2 Понятие звездной эволюции


Звезды - грандиозные плазменные системы, в которых физические характеристики, внутреннее строение и химический состав изменяются со временем. Время звездной эволюции, разумеется, очень велико, и мы не можем непосредственно проследить эволюцию той или иной конкретной звезды. Это компенсируется тем, что каждая из множества звезд на небе проходит некоторый этап эволюции. Суммируя наблюдения, можно восстановить общую направленность звездной эволюции (по диаграмме Герцшпрунга - Рессела она отображается главной последовательностью и отступлением от нее вверх и вниз). Современная теория строения и эволюции звезд объясняет общий ход развития звезд в хорошем согласии с данными наблюдения.

Основные фазы в эволюции звезды - ее рождение (звездообразование); длительный период (обычно стабильного) существования звезды как целостной системы, находящейся в гидродинамическом и тепловом равновесии; и, наконец, период ее «смерти», т.е. необратимое нарушение равновесия, которое ведет к разрушению звезды или к ее катастрофическому сжатию.

Ход эволюции звезды зависит от ее массы и исходного химического состава, который, в свою очередь, зависит от времени образования звезды и ее положения в Галактике в момент образования. Чем больше масса звезды, тем быстрее идет ее эволюция и тем короче ее «жизнь». Для звезд с массой, превышающей солнечную массу в 15 раз, время стабильного существования оказывается всего около 10 млн лет. Это крайне незначительное время по космическим меркам, ведь время, отведенное для нашего Солнца, на 3 порядка выше - около 10 млрд лет.

Как по отношению к истории человечества, так и по отношению к истории звезд можно говорить об их поколениях. Каждое поколение звезд имеет особые закономерности формирования и эволюции. Например, звезды первого поколения образовались из вещества, состав которого сложился в начальный период существования Вселенной - почти 75% водорода и 25% гелия с ничтожной примесью дейтерия и трития. В ходе, по-видимому, достаточно быстрой эволюции массивных звезд первого поколения образовались более тяжелые химические элементы (в основном вплоть до железа), которые впоследствии были выброшены в межзвездное пространство в результате истечения вещества из звезд или их взрывов. Звезды последующих поколений уже формировались из вещества, содержащего 3-4% тяжелых элементов. Поэтому, говоря о звездной эволюции, надо различать по крайней мере три значения этого понятия: эволюция отдельной звезды, эволюция отдельных типов (поколений) звезд и эволюция звездной материи как таковой.

2. Диалектика «борьбы» между гравитацией и температурой в течении «жизни» звезд.


2.1 Процесс звездообразования.


Звездообразование - это процесс рождения звезд из межзвездного газа, газопылевых образований, облаков. Процесс звездообразования продолжается непрерывно, он происходит и в настоящее время.

Как мы уже отмечали, для каждого поколения звезд характерны конкретные условия звездообразования. Кроме того, первые поколения звезд образовывались в основном в области галактического центра, во всем его объеме. В дальнейшем, в связи с тем, что межзвездный газ все больше концентрировался в плоскости Галактики, звездообразование происходило и происходит сейчас в этой галактической плоскости.

Звезды образуются не в одиночку, а группами, скоплениями, что является результатом гравитационной конденсации, сжатия (коллапса) громадных объемов межзвездного газа, газопылевых облаков. Этот процесс хорошо описывается теорией. Кроме того, имеются многочисленные наблюдательные данные рождения звезд. Их число особенно увеличилось с возникновением радио- и инфракрасной астрономии, для диапазонов которых газ и пыль прозрачны.

Звездообразование начинается со сжатия и последующей фрагментации (под действием гравитационных сил) протяженных холодных облаков молекулярного межзвездного газа. Масса газа должна быть такой, чтобы действие сил гравитации преобладало над действием сил газового давления. При современных температурах межзвездного газа (10-30 К) его минимальная масса, которая может конденсироваться, коллапсировать, составляет не менее тысячи масс нашего Солнца. Каждый из образовавшихся фрагментов может в свою очередь разделяться на отдельные фрагменты (так называемая каскадная фрагментация). Последняя серия фрагментов и представляет собой материал, из которого непосредственно формируются звезды.

По мере сжатия в таком фрагменте постепенно выделяются ядро и оболочка. Ядро - это центральная, более плотная и компактная часть, достигшая гидростатического равновесия. Оболочка - это внешняя, протяженная, продолжающая коллапсировать часть газопылевого фрагмента. (Из материала оболочки впоследствии при ее преобразовании в газопылевой диск могут образовываться окружающие звезду планеты.) Процесс конденсации сопровождается возрастанием магнитного поля, ростом давления газа. Долгое время оболочка остается плотной и непрозрачной, что делает рождающуюся звезду невидимой в оптическом диапазоне. (Зато ее можно зафиксировать средствами радио- и инфракрасной астрономии.) Так постепенно формируются протозвезды - грандиозные непрозрачные массы межзвездного газа со сформировавшимся ядром, в которых гравитация уравновешивается силами внутреннего давления.

С образованием протозвезды рост массы ее ядра не прекращается. Масса ядра продолжает увеличиваться а счет выпадения газа на ядро из оболочки (аккреция). Силы гравитации растут и разогревают ядро, которое претерпевает качественные изменения, в том числе возрастают его светимость и давление излучения. Затем рост ядра и конденсация газа из оболочки прекращаются. Оболочка постепенно «сдувается» излучением и рассеивается. А ядро со стороны приобретает вид звездного объекта. Этот процесс гравитационного сжатия длится относительно недолго (от сотен тысяч до нескольких десятков млн лет) и заканчивается тогда, когда температура в центре достигает тех значений (10-15 млн градусов), при которых включается другой источник энергии - термоядерные реакции. Сжатие при этом прекращается и процесс звездообразования завершается: протозвезда окончательно превращается в звезду.

Теория звездообразования не только описывает его общий ход, но и позволяет выделить факторы, которые могут замедлять или стимулировать звездообразование. К замедляющим факторам относятся: незначительная масса протозвезды, высокая скорость вращения газопылевого облака, сильное магнитное поле и др. Стимулирующими звездообразование процессами являются: ударные волны, порожденные вспышками сверхновых звезд; ионизационные фронты; столкновение облаков; звездный ветер (поток плазмы от горячих звезд) и др. Например, если масса протозвезды очень мала (менее 0,08 массы Солнца), то ее гравитационное сжатие происходит очень медленно, а температура в ядре никогда не достигает значений, необходимых для начала термоядерной реакции. Такие протозвезды будут сжиматься очень и очень долго (время их гравитационного сжатия превышает время жизни Галактики), постепенно превращаясь в так называемые черные дыры.


2.2 Звезда - плазменный шар


Звезды - это огромные раскаленные солнца, но столь удаленные от нас по сравнению с планетами Солнечной системы, что, хотя, они сияют в миллионы раз ярче, их свет кажется нам относительно тусклым.

В звездах сосредоточена основная масса (98-99%) видимого вещества в известной нам части Вселенной. Звезды - мощные источники энергии. В частности, жизнь на Земле обязана своим существованием энергии излучения Солнца.

Вещество звезд представляет собой плазму, т.е. находится в ином состоянии, чем вещество в привычных для нас земных условиях. Плазма - это четвертое (наряду с твердым, жидким, газообразным) состояние вещества, представляющее собой ионизированный газ, в котором положительные (ионы) и отрицательные заряды (электроны) в среднем нейтрализуют друг друга. В земных условиях плазма встречается очень редко - в электрических разрядах в газах, молнии, в процессах горения и взрыва и т.д. Около Земли плазма существует в виде солнечного ветра, радиационных поясов, ионосферы и др. Зато во Вселенной в состоянии плазмы находится подавляющая часть вещества. Кроме звезд, это - межзвездная среда, галактические туманности и др. Итак, строго говоря, звезда - это не просто газовый шар, а плазменный шар.

Звезда - динамическая, направленным образом изменяющаяся плазменная система. В ходе жизни звезды ее химический состав и распределение химических элементов значительно изменяются. На поздних стадиях развития звездное вещество переходит в состояние вырожденного газа (в котором квантово-механическое влияние частиц друг на друга существенным образом сказывается на его физических свойствах - давлении, теплоемкости и др.), а иногда и нейтронного вещества (пульсары - нейтронные звезды, барстеры - источники рентгеновского излучения и др.)

Высокая светимость звезд, поддерживаемая в течение длительного времени, свидетельствует о выделении в них огромных количеств энергии. Современная физика указывает на два возможных источника энергии - гравитационное сжатие, приводящее к выделению гравитационной энергии, и термоядерные реакции, в результате которых из ядер легких элементов синтезируются ядра более тяжелых элементов, и выделяется большое количество энергии.

Как показывают расчеты, энергии гравитационного сжатия было бы достаточно для поддержания светимости Солнца в течение всего лишь 30 млн лет. Но из геологических и других данных следует, что светимость Солнца оставалась примерно постоянной в течение миллиардов лет. Гравитационное сжатие может служить источником энергии лишь для очень молодых звезд. С другой стороны, термоядерные реакции протекают с достаточной скоростью лишь при температурах, в тысячи раз превышающих температуру поверхности звезд. Так, для Солнца температура, при которой термоядерные реакции могут выделять необходимое количество энергии, составляет, по различным расчетам, от 12 до 15 млн. Ко. Такая колоссальная температура достигается в результате гравитационного сжатия, которое и «зажигает» термоядерную реакцию. Таким образом, в настоящее время наше Солнце является медленно горящей водородной бомбой.


2.3 Звезда как саморегулирующаяся система.


Источниками энергии у большинства звезд являются водородные термоядерные реакции в центральной зоне. В ходе этих реакций водород превращается в гелий, выделяя громадное количество энергии.

Водород - главная составная часть космического вещества и важнейший вид ядерного горючего в звездах. Запасы его в звездах настолько велики, что ядерные реакции могут протекать в течение миллиардов лет. При этом, до тех пор пока в центральной зоне весь водород не выгорит, свойства звезды изменяются мало.

В недрах звезд, при температурах более 10 млн. Ко и огромных плотностях, газ обладает давлением в миллиарды атмосфер. В этих условиях звезда может находиться в стационарном состоянии лишь благодаря тому, что в каждом ее слое внутреннее давление газа уравновешивается действием сил тяготения. Если внутри звезды температура по какой-либо причине повысится, то звезда должна раздуться, так как возрастает давление в ее недрах. И, наоборот, если температура внутри звезды, а значит и давление, понизится, то радиус звезды уменьшается. Такое состояние называется гидростатическим равновесием. Следовательно, стационарная звезда представляет собой плазменный шар, находящийся в состоянии гидростатического равновесия.

Стационарное состояние звезд характеризуется еще и тепловым равновесием, которое означает, что процессы выделения энергии в недрах звезд, процессы теплоотвода энергии из недр к поверхности и процессы излучения энергии с поверхности должны быть сбалансированы. Если теплоотвод превысит тепловыделение, то звезда начнет сжиматься и разогреваться. Это приведет к ускорению ядерных реакций, и тепловой баланс будет вновь восстановлен. Таким образом, звезда представляет собой тонко сбалансированный «организм», она оказывается саморегулирующейся системой. Причем чем звезда больше, тем быстрее она исчерпывает свой запас энергии.

После выгорания водорода в центральной зоне звезды образуется гелиевое ядро. Водородные термоядерные реакции продолжают протекать, но только в тонком слое вблизи поверхности этого ядра. Постепенно они перемещаются на периферию звезды. Звезда принимает гетерогенную структуру. Выгоревшее ядро начинает сжиматься, а внешняя оболочка - расширяться. Оболочка разбухает до колоссальных размеров, внешняя температура становится низкой, и звезда переходит в стадию красного гиганта. С этого момента жизнь звезды начинает клониться к закату.

Полагают, что на стадии красного гиганта наше Солнце увеличится настолько, что заполнит орбиту Меркурия. Правда, Солнце станет красным гигантом примерно через 5 млрд. лет. Так что особых оснований для беспокойства у жителей Земли нет. Ведь солнечная система образовалась всего лишь 5 млрд. лет назад.

Для красного гиганта характерна низкая внешняя температура, но очень высокая внутренняя. С ее повышением в термоядерные реакции включаются все более тяжелые ядра. На этом этапе (при температуре свыше 150 млн. Ко) в ходе ядерных реакций осуществляется синтез более тяжелых, чем гелий, химических элементов.

3. Звездные «останки»: белые карлики, нейтронные звезды, черные дыры.

 

3.1 Белые карлики.


Белые карлики - одна из увлекательнейших тем в истории астрономии: впервые были открыты небесные тела, обладающие свойствами, весьма далёкими от тех, с которыми мы имеем дело в земных условиях. И, по всей вероятности, разрешение загадки белых карликов положило начало исследованиям таинственной природы вещества, запрятанного где-то в разных уголках Вселенной.

Во Вселенной много белых карликов. Одно время они считались редкостью, но внимательное изучение фотопластинок, полученных в обсерватории Маунт-Паломар (США), показало, что их количество превышает 1500. Удалось оценить пространственную плотность белых карликов: оказывается, в сфере с радиусом в 30 световых лет должно находиться около 100 таких звёзд. История открытия белых карликов восходит к началу 19в, когда Фридрих Вильгельм Бессель, прослеживая движение наиболее яркой звезды Сириус, открыл, что её путь является не прямой линией, а имеет волнообразный характер. Собственное движение звезды происходило не по прямой линии; казалось, что она едва заметно смещалась из стороны в сторону. К 1844г., спустя примерно десять лет после первых наблюдений Сириуса, Бессель пришёл к выводу, что рядом с Сириусом находится вторая звезда, которая, будучи невидимой, оказывает на Сириус гравитационное воздействие; оно обнаруживается по колебаниям в движении Сириуса. Ещё более интересным оказалось то обстоятельство, что если тёмный компонент действительно существует, то период обращения обеих звёзд относительно их общего центра тяжести равен приблизительно 50 годам. В 1862г. Алван Кларк увидел слабый «призрак», который появился на восточном краю поля зрения телескопа в отблеске Сириуса. Затем, по мере движения небосвода, в поле зрения попал и сам Сириус. Его изображение было искажено - казалось, что «призрак» представляет собой дефект линзы. Однако эта возникшая в поле зрения телескопа слабая звёздочка оказалась компонентом Сириуса, предсказанным Бесселем.

Таким образом, Сириус стал предметом всеобщего интереса и многих исследований, ибо физические характеристики двойной звезды[1] заинтриговали астрономов. С учётом особенностей движения Сириуса, его расстояние до Земли и амплитуды отклонений от прямолинейного движения астрономам удалось определить характеристики обеих звёзд системы, названых Сириус А и Сириус В. Суммарная масса обеих звёзд оказалась в 3,4 раза больше массы Солнца. Было найдено, что расстояние между звёздами почти в 20 раз превышает расстояние между Солнцем и Землёй, то есть примерно равно расстоянию между Солнцем и Ураном; полученная на основании измерения параметров орбиты масса Сириуса А оказалась в 2,5 раза больше массы Солнца, а масса Сириуса В составила 95% массы Солнца. После того как были определены светимости обеих звёзд, обнаружилось, что Сириус А почти в 10 000 раз ярче, чем Сириус В. По абсолютной величине Сириуса А мы знаем, что он примерно в 35,5 раза светит сильнее Солнца. Отсюда следует, что светимость Солнца в 300 раз превышает светимость Сириуса В.

Светимость любой звезды зависит от температуры поверхности звезды и её размеров, то есть диаметра. Близость второго компонента к более яркому Сириусу А чрезвычайно осложняет определение его спектра, что необходимо для установки температуры звезды. В 1915г. с использованием всех технических средств, которыми располагала крупнейшая обсерватория того времени Маунт-Вилсон (США), были получены удачные фотографии спектра Сириуса. Это привело к неожиданному открытию: температура спутника составляла 8000 Ко, тогда как Солнце имеет температуру 5700 Ко. Таким образом, спутник в действительности оказался горячее Солнца, а это означало, что светимость единицы его поверхности также больше.

В самом деле, простой расчёт показывает, что каждый квадратный сантиметр этой звезды излучает в четыре раза больше энергии, чем квадратный сантиметр поверхности Солнца. Отсюда следует, что поверхность спутника должна быть в 300 раз меньше, чем поверхность Солнца, и Сириус В должен иметь диаметр около 40 000 км. Однако масса этой звезды составляет 95% от массы Солнца. Этот значит, что огромное количество вещества должно быть упаковано в чрезвычайно малом объёме, иначе говоря, звезда должна быть плотной. В результате несложных арифметических действий получаем, что плотность спутника почти в 100 000 раз превышает плотность воды. Кубический сантиметр этого вещества на Земле весил бы 100 кг, а 0,5 л такого вещества - около 50 т.

Такова история открытия первого белого карлика. А теперь зададимся вопросом: каким образом вещество можно сжать так, чтобы один кубический сантиметр его весил 100 кг?

Когда в результате высокого давления вещество сжато до больших плотностей, как в белых карликах, то вступает в действие другой тип давления, так называемое «вырожденное давление». Оно появляется при сильнейшем сжатии вещества в недрах звезды. Именно сжатие, а не высокие температуры является причиной вырожденного давления. Вследствие сильного сжатия атомы оказываются настолько плотно упакованными, что электронные оболочки начинают проникать одна в другую.

Гравитационное сжатие белого карлика происходит в течение длительного времени, и электронные оболочки продолжают проникать друг в друга до тех пор, пока расстояние между ядрами не станет порядка радиуса наименьшей электронной оболочки. Внутренние электронные оболочки представляют собой непроницаемый барьер, препятствующий дальнейшему сжатию. При максимальном сжатии электроны уже не связаны с отдельными ядрами, а свободно движутся относительно них. Процесс отделения электронов от ядер происходит в результате ионизации давлением. Когда ионизация становится полной, облако электронов движется относительно решётки из более тяжёлых ядер, так что вещество белого карлика приобретает определённые физические свойства, характерные для металлов. В таком веществе энергия переносится к поверхности электронами, подобно тому, как тепло распространяется по железному пруту, нагреваемому с одного конца.

Но электронный газ проявляет и необычные свойства. По мере сжатия электронов их скорость всё больше возрастает, потому что, как мы знаем, согласно фундаментальному физическому принципу, два электрона, находящиеся в одном элементе фазового объёма, не могут иметь одинаковые энергии. Следовательно, чтобы не занимать один и тот же элемент объёма, они должны двигаться с огромными скоростями. Наименьший размер допустимого объёма зависит от диапазона скоростей электронов. Однако в среднем, чем ниже скорость электронов, тем больше тот минимальный объём, который они могут занимать. Иными словами, самые быстрые электроны занимают наименьший объём. Хотя отдельные электроны носятся со скоростями, соответствующими внутренней температуре порядка миллионов градусов, температура полного ансамбля электронов в целом остаётся низкой.

Установлено, что атомы газа обычного белого карлика образуют решётку плотно упакованных тяжёлых ядер, сквозь которую движется вырожденный электронный газ. Ближе к поверхности звезды вырождение ослабевает, и на поверхности атомы ионизированы не полностью, так что часть вещества находится в обычном газообразном состоянии.

Зная физические характеристики белых карликов, мы можем сконструировать их наглядную модель. Начнём с того, что белые карлики имеют атмосферу. Анализ спектров карликов приводит к выводу, что толщина их атмосферы составляет всего несколько сотен метров. В этой атмосфере астрономы обнаруживают различные знакомые химические элементы. Известны белые карлики двух типов - холодные и горячие. В атмосферах более горячих белых карликов содержится некоторый запас водорода, хотя, вероятно, он не превышает 0,05%. Тем не менее по линиям в спектрах этих звёзд были обнаружены водород, гелий, кальций, железо, углерод и даже окись титана. Атмосферы холодных белых карликов состоят почти целиком из гелия; на водород, возможно, приходится меньше, чем один атом из миллиона. Температуры поверхности белых карликов меняются от 5000 Ко у "холодных" звёзд до 50 000 Ко у "горячих". Под атмосферой белого карлика лежит область невырожденного вещества, в котором содержится небольшое число свободных электронов. Толщина этого слоя 160 км, что составляет примерно 1% радиуса звезды. Слой этот может меняться со временем, но диаметр белого карлика остаётся постоянным и равным примерно 40 000 км. Как правило, белые карлики не уменьшаются в размерах после того, как достигли этого состояния. Они ведут себя подобно пушечному ядру, нагретому до большой температуры; ядро может менять температуру, излучая энергию, но его размеры остаются неизменными. Чем же определяется окончательный диаметр белого карлика ? Оказывается его массой. Чем больше масса белого карлика, тем меньше его радиус; минимально возможный радиус составляет 10 000 км. Теоретически, если масса белого карлика превышает массу Солнца в 1,2 раза, его радиус может быть неограниченно малым. Именно давление вырожденного электронного газа предохраняет звезду от всяческого дальнейшего сжатия, и, хотя температура может меняться от миллионов градусов в ядре звезды до нуля на поверхности, диаметр её не меняется. Со временем звезда становится тёмным телом с тем же диаметром, который она имела, вступив в стадию белого карлика.

Под верхним слоем звезды вырожденный газ практически изотермичен, то есть температура почти постоянна вплоть до самого центра звезды; она составляет несколько миллионов градусов - наиболее реальная цифра 6 млн. Ко.

Теперь, когда мы имеем некоторые представления о строении белого карлика, возникает вопрос: почему он светится ? Очевидно одно: термоядерные реакции исключаются. Внутри белого карлика отсутствует водород, который поддерживал бы этот механизм генерации энергии.

Единственный вид энергии, которым располагает белый карлик – это тепловая энергия. Ядра атомов находятся в беспорядочном движении, так как они рассеиваются вырожденным электронным газом. Со временем движение ядер замедляется, что эквивалентно процессу охлаждения. Электронный газ, который не похож ни на один из известных на Земле газов, отличается исключительной теплопроводностью, и электроны проводят тепловую энергию к поверхности, где через атмосферу эта энергия излучается в космическое пространство.

Астрономы сравнивают процесс остывания горячего белого карлика с остыванием железного прута, вынутого из огня. Сначала белый карлик охлаждается быстро, но по мере падения температуры внутри него охлаждение замедляется. Согласно оценкам, за первые сотни миллионов лет светимость белого карлика падает на 1% от светимости Солнца. В конце концов белый карлик должен исчезнуть и стать чёрным карликом, однако на это могут понадобиться триллионы лет, и, по мнению многих учёных, представляется весьма сомнительным, чтобы возраст Вселенной был достаточно велик для появления в ней чёрных карликов.

Другие астрономы считают, что и в начальной фазе, когда белый карлик ещё довольно горяч, скорость охлаждения невелика. А когда температура его поверхности падает до величины порядка температуры Солнца, скорость охлаждения увеличивается и угасание происходит очень быстро. Когда недра белого карлика достаточно остынут, они затвердеют.

Массы белых карликов определены недостаточно точно. Надёжно их можно установить для компонентов двойных систем, как в случае Сириуса. Но лишь немногие белые карлики входят в состав двойных звёзд. В трёх наиболее хорошо изученных случаях массы белых карликов, измеренные с точностью свыше 10%, оказались меньше массы Солнца и составляли примерно половину её. Теоретически предельная масса для полностью вырожденной не вращающейся звезды должна быть в 1,2 раза больше массы Солнца. Однако если звёзды вращаются, а по всей вероятности, так оно и есть, то вполне возможны массы, в несколько раз превышающие солнечную.Сила тяжести на поверхности белых карликов примерно в 60-70 раз больше, чем на Солнце. Если человек весит на Земле 75 кг, то на Солнце он весил бы 2тонны, а на поверхности белого карлика его вес составлял бы 120-140 тонн. С учётом того, что радиусы белых карликов мало отличаются и их массы почти совпадают, можно заключить, что сила тяжести на поверхности любого белого карлика приблизительно одна и та же. Во Вселенной много белых карликов. Одно время они считались редкостью, но внимательное изучение фотопластинок, полученных в обсерватории Маунт-Паломар, показало, что их количество превышает 1500. Астрономы полагают, что частота возникновения белых карликов постоянна, по крайней мере, в течение последних 5 млрд. лет. Возможно, белые карлики составляют наиболее многочисленный класс объектов на небе. Удалось оценить пространственную плотность белых карликов: оказывается, в сфере с радиусом в 30 световых лет должно находиться около 100 таких звёзд. Возникает вопрос: все ли звёзды становятся белыми карликами в конце своего эволюционного пути? Если нет, то какая часть звёзд переходит в стадию белого карлика?

Полная картина образования белых карликов туманна и неопределенна. Отсутствует так много деталей, что в лучшем случае описание эволюционного процесса можно строить лишь путём логических умозаключений.

И, тем не менее, общий вывод таков: многие звёзды теряют часть вещества на пути к своему финалу, подобному стадии белого карлика, и затем скрываются на небесных «кладбищах» в виде чёрных, невидимых карликов.

3.2 Нейтронные звезды

 

Нейтронные звезды образуются при вспышках сверхновых звезд, если первоначальная масса звезды была в несколько раз больше массы солнца, или при аккреции[2] вещества на белый карлик в тесной двойной системе. Нейтронные звезды являются одними из самых интересных астрофизических объектов с физической точки зрения. Для них характерны такие явления и свойства как: сверхтекучесть, сверхпроводимость, сверхсильные магнитные поля, излучение нейтрино, эффекты специальной и общей теории относительности. В недрах нейтронных звезд могут существовать экзотические формы материи.

Сразу после открытия нейтрона советский физик Л.Д. Ландау (1908-1968) показал, что возможны макрообъекты, состоящие в основном из нейтронов - нейтронные звезды. Такие объекты устойчивы благодаря давлению вырожденного газа. Но это не газ электронов, как в случае белых карликов, а газ нейтронов. Нейтронные звезды имеют размеры около 10км. Т.к. нейтроны почти в 2000 раз тяжелее электронов, то при той же массе (порядка солнечной) нейтронные звезды в тысячу раз меньше белых карликов. Эти параметры соответствуют плотности около 1014 г/см3, что порядка плотности атомного ядра. Спичечный коробок с веществом нейтронной звезды весит около десяти миллиардов тонн.

В 1934 г. Вальтер Бааде (1893-1960) и Фриц Цвикки (1898-1974) предсказали, что нейтронные звезды могут рождаться во вспышках сверхновых. Однако в целом предсказания были малообещающими с астрономической точки зрения: светимость, связанная с тепловым излучением нейтронной звезды, ничтожно мала, и в середине 20 века не было никакой надежды обнаружить нейтронные звезды. Нейтронные звезды были неожиданно открыты как радиопульсары в 1967 г. в Англии. Радиопульсары - источники периодических всплесков радиоизлучения. В ходе исследований мерцаний космических радиоисточников Джоселин Белл, работавшая под руководством Энтони Хьюиша, обнаружила строго периодический радиосигнал. После того, как была отброшена гипотеза об искусственном происхождении сигнала (его связывали с внеземной цивилизацией) наблюдения были рассекречены, и в течение очень короткого времени радиопульсары были отождествлены с нейтронными звездами.

Излучение радиопульсаров связано с мощным магнитным полем нейтронных звезд (около 1012 гаусс, для сравнения – на Земле 1 гаусс) и быстрым вращением (периоды радиопульсаров лежат в дипазоне от 0.0015 до примерно 8 секунд). Вращающийся магнит дает излучение, если магнитная ось и ось вращения не совпадают. Чем больше магнитное поле и скорость вращения, тем больше мощность излучения.

Если аккреция идет на нейтронную звезду, то выделяет большое количество энергии. Это связано с компактностью нейтронных звезд, благодаря чему падающее вещество приобретает гигантскую скорость (близкую к скорости света). Кинетическая энергия падающего вещества после столкновения с поверхностью (или в диске вокруг звезды) переходит в тепло. И оно излучается в рентгеновском диапазоне, т.к. температура достигает нескольких миллионов градусов.

Если на нейтронную звезду выпадет слишком много вещества, то она может превратиться в черную дыру, т.к. ничто (в том числе и давление вырожденного нейтронного газа) не сможет противостоять гравитации.

Нейтронные звезды образуются из массивных звезд с массами от 8-10 до 30-40 солнечных масс. Из более массивных звезд образуются черные дыры. Образование нейтронной звезды сопровождается вспышкой сверхновой - колоссальным взрывом ядра массивной проэволюционировавшей звезды. После взрыва кроме нейтронной звезды остается разлетающееся вещество - остаток сверхновой. Один из самых известных - Крабовидная туманность в созвездии Тельца. Остатки сверхновых излучают в основном в радио, оптическом и рентгеновском диапазонах спектра. Излучение связано с движением электронов и имеет нетепловую природу.

Молодая нейтронная звезда может наблюдаться как радиопульсар, а также как слабый источник в оптическом и рентгеновском диапазонах. Это возможно т.к. молодая нейтронная звезда очень горяча, ее температура порядка сотен тысяч градусов.

Оценки показывают, что в нашей Галактике должно быть несколько сотен миллионов нейтронных звезд. Большинство из них старые одиночные объекты.

Они не излучают радиоволны (стадия пульсара для одиночной звезды длится 107-108 лет). Единственная возможность увидеть их - аккреция межзвездного вещества. Но это очень слабые объекты рентгеновского диапазона. Кроме того, исследования показывают, что лишь несколько процентов старых нейтронных звезд находятся на стадии аккреции. Поэтому большинство объектов этого типа недоступно для наших наблюдений.

В последнее время большое развитие получили исследования слияния двойных нейтронных звезд.

Если в состав тесной двойной системы входит два компактных объекта (нейтронные звезды или черные дыры), то они будут довольно быстро сближаться за счет излучения гравитационных волн, предсказанных общей теорией относительности.

В случае достаточно тесной системы слияние произойдет за время меньшее возраста Вселенной. В 70-е гг. была открыта первая такая система, состоящая из двух нейтронных звезд. За это открытие Р. Халс и Дж. Тейлор в 1993 г получили Нобелевскую премию по физике.

Эта система сольется через несколько сотен миллионов лет. При таком слиянии выделяется колоссальное количество энергии (больше чем при взрыве сверхновой). Слияния связывают с космическими источниками гамма-всплесков

3.3 Черные дыры

 

Если масса звезды в два раза превышает солнечную, то к концу своей жизни звезда может взорваться как сверхновая[3], но если масса вещества, оставшегося после взрыва, всё еще превосходит две солнечные, то звезда должна сжаться в плотное крошечное тело, так как гравитационные силы всецело подавляют всякое сопротивление сжатию. Учёные полагают, что именно в этот момент катастрофический гравитационный коллапс приводит к возникновению черной дыры. Они считают, что с окончанием термоядерных реакций звезда уже не может находиться в устойчивом состоянии. Тогда для массивной звезды остаётся один неизбежный путь: путь всеобщего и полного сжатия (коллапса), превращающего её в невидимую чёрную дыру. В 1939 году Р. Оппенгеймер и его аспирант Снайдер в Калифорнийском университете (Беркли) занимались выяснением окончательной судьбы большой массы холодного вещества. Одним из наиболее впечатляющих следствий общей теории относительности Эйнштейна оказалось следующее: когда большая масса начинает коллапсировать, этот процесс не может быть остановлен и масса сжимается в чёрную дыру. Если, например, не вращающаяся симметричная звезда начинает сжиматься до критического размера, известного как гравитационный радиус, или радиус Шварцшильда (назван так в честь Карла Шварцшильда, который первым указал на его существование). Если звезда достигает этого радиуса, то уже не что не может воспрепятствовать ей завершить коллапс, то есть буквально замкнуться в себе.

Каковы же физические свойства «чёрных дыр» и как учёные предполагают обнаружить эти объекты? Многие учёные раздумывали над этими вопросами; получены кое-какие ответы, которые способны помочь в поиска таких объектов. Само название – чёрные дыры – говорит о том, что это класс объектов, которые нельзя увидеть. Их гравитационное поле настолько сильно, что если бы каким-то путём удалось оказаться вблизи чёрной дыры и направить в сторону от её поверхности луч самого мощного прожектора, то увидеть этот прожектор было бы нельзя даже с расстояния, не превышающего расстояние от Земли до Солнца. Действительно, даже если бы мы смогли сконцентрировать весь свет Солнца в этом мощном прожекторе, мы не увидели бы его, так как свет не смог бы преодолеть воздействие на него гравитационного поля чёрной дыры и покинуть её поверхность. Именно поэтому такая поверхность называется абсолютным горизонтом событий. Она представляет собой границу чёрной дыры. Учёные отмечают, что эти необычные объекты нелегко понять, оставаясь в рамках закона тяготения Ньютона. Вблизи поверхности чёрной дыры гравитация столь сильна, что привычные Ньютоновские законы здесь перестают действовать. Их следует заменить законами общей теории относительности Эйнштейна. Согласно одному из трёх следствий теории Эйнштейна, покидая массивное тело, свет должен испытывать красное смещение, так как он теряет энергию на преодоление гравитационного поля звёзды. Излучение, приходящее от плотной звезды, подобной белому карлику – спутнику Сириуса А, - лишь слегка смещается в красную область спектра. Чем плотнее звезда, тем больше это смещение, так что от сверхплотной звезды совсем не будет приходить излучения в видимой области спектра. Но если гравитационное действие звезды увеличивается в результате её сжатия, то силы тяготения оказываются настолько велики, что свет вообще не может покинуть звезду. Таким образом, для любого наблюдателя возможность увидеть черную дыру полностью исключена! Но тогда естественно возникает вопрос: если она не видима, то, как же мы можем её обнаружить? Чтобы ответить на этот вопрос учёные прибегают к искусным уловкам. Руффини и Уиллер досконально изучили эту проблему и предложили несколько способов, пусть не увидеть, но хотя бы обнаружить чёрную дыру. Начнём с того, что, когда чёрная дыра рождается в процессе гравитационного коллапса, она должна излучать гравитационные волны, которые могли бы пересекать пространство со скоростью света и на короткое время искажать геометрию пространства вблизи Земли. Это искажение проявилось бы в виде гравитационных волн, действующих одновременно на одинаковые инструменты, установленные на земной поверхности на значительном расстоянии друг от друга. Гравитационное излучение могло бы приходить от звёзд, испытывающих гравитационный коллапс. Если в течение обычной жизни звезда вращалась, то, сжимаясь и становясь всё меньше и меньше, она будет вращаться всё быстрее, сохраняя свой момент количества движения.  Наконец она может достигнуть такой стадии, когда скорость движения на её экваторе приблизится к скорости света, то есть к предельно возможной скорости. В этом случае звезда оказалась бы сильно деформированной и могла бы выбросить часть вещества. При такой деформации энергия могла бы уходить от звезды в виде гравитационных волн  с частотой порядка тысячи колебаний в секунду (1000 Гц). Роджер Пенроуз, профессор математики Биркбекского колледжа Лондонского университета, рассмотрел любопытный случай коллапса и образования чёрной дыры. Он допускает, что чёрная дыра исчезает, а затем проявляется в другое время в какой-то иной вселенной. Кроме того, он утверждает, что рождение чёрной дыры во время гравитационного коллапса является важным указанием на то, что с геометрией пространства-времени происходит нечто необычное. Исследования Пенроуза показывают, что коллапс заканчивается образованием сингулярности (от лат. singularius – отдельный, одиночный), то есть он должен продолжаться до нулевых размеров и бесконечной плотности объекта. Последнее условие даёт возможность другой вселенной приблизиться к этой сингулярности, и не исключено, что сингулярность перейдёт в эту новую вселенную. Она даже может появиться в каком либо месте нашей собственной Вселенной. Некоторые учёные рассматривают образование чёрной дыры как маленькую модель того, что, согласно предсказаниям общей теории относительности, в конечном счёте, может случиться с Вселенной. Общепризнано, что мы живем в неизменно расширяющейся Вселенной, и один из наиболее важных и насущных вопросов науки касается природы Вселенной, её прошлого и будущего. Без сомнения, все современные результаты наблюдений указывают на расширение Вселенной. Однако на сегодня один из самых каверзных вопросов таков: замедляется ли скорость этого расширения, и если да, то не сожмётся ли Вселенная через десятки миллиардов лет, образуя сингулярность. По-видимому, когда-нибудь мы сможем выяснить, по какому пути следует Вселенная, но, быть может, много раньше, изучая информацию, которая просачивается при рождении чёрных дыр, и те физические законы, которые управляют их судьбой, мы сможем предсказать окончательную судьбу Вселенной.

ВЫВОД


Звезды эволюционируют, и их эволюция необратима, так как все в природе находится в состоянии беспрерывного изменения. Внешние характеристики звезды меняются в течение всей ее жизни. В недрах звезд происходят мощные термоядерные процессы, обеспечивающие выделение огромного количества энергии. В конечные этапы жизни звезд в них возникают некие упорядоченные состояния, которые не могут быть описаны классической физикой. В нейтронных звездах и белых карликах вещество переходит в новые квантовые состояния, которые ограничивают энергетические потери.

Обнаружить эти изменения – вот основная задача теории звездной эволюции.

СПИСОК ИСПОЛЬЗОВАННОЙ  ЛИТЕРАТУРЫ


1) Найдыш В.М. «Концепции современного естествознания»: Учебник. -Изд. 2-е, перераб. и доп. - М.: Альфа-М; ИНРА-М, 2005.

2) Агекян Т.А. «Звезды, галактики, Метагалктика» - 3-е изд, перераб. и доп. - М.: Наука, 1981.

3) С.Л. Шарипо, С.А. Тьюкольски. Черные дыры, нейтронные звезды, белые карлики: В 2-х ч. Ч. 1. Пер. с англ. – М.: Мир, 1985, 256с., ил.

4) С.Л. Шарипо, С.А. Тьюкольски. Черные дыры, нейтронные звезды, белые карлики: В 2-х ч. Ч. 2. Пер. с англ. – М.: Мир, 1985, 257 – 656 с., ил.

5) И.С. Шкловский Звезды: их рождение, жизнь и смерть. – 3-е изд., перераб. – М: Наука, главная редакция физико-математической литературы, 1984, 384 с. – В пер.: 2 р.

6) Ю.С. Псковский «Новые и сверхновые звезды»: Москва «Наука» 1974.


[1] Двойные звезды – это звезды, близкие одна к другой и составляющие физические

системы. Компоненты двойных звезд связаны силами взаимного тяготения,

обращаются по эллиптическим орбитам вокруг общего центра масс и совместно

движутся в просторах Галактики.

[2] Аккреция – перенос вещества с одной звезды на другую, когда двойные звезды достаточно близки друг к другу.

[3] Сверхновые звезды – это переменные звезды, светимость которых внезапно увеличивается в сотни миллионов раз, а затем медленно спадает.


рефераты
© РЕФЕРАТЫ, 2012

рефераты