рефераты рефераты
 

Главная

Разделы

Новости

О сайте

Контакты

 
рефераты

Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Бизнес-план
Биология
Бухучет управленчучет
Водоснабжение водоотведение
Военная кафедра
География и геология
Геодезия
Государственное регулирование и налогообложение
Гражданское право
Гражданское процессуальное право
Животные
Жилищное право
Иностранные языки и языкознание
История и исторические личности
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Логика
Логистика
Маркетинг
Масс-медиа и реклама
Математика
Медицина
Международное и Римское право
Уголовное право уголовный процесс
Трудовое право
Журналистика
Химия
География
Иностранные языки
Без категории
Физкультура и спорт
Философия
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Радиоэлектроника
Религия и мифология
Риторика
Социология
Статистика
Страхование
Строительство
Схемотехника
История
Компьютеры ЭВМ
Культурология
Сельское лесное хозяйство и землепользование
Социальная работа
Социология и обществознание

рефераты
рефераты

НАУЧНАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Влияние параметров микроклимата на самочувствие человека

Влияние параметров микроклимата на самочувствие человека

ВЛИЯНИЕ ПАРАМЕТРОВ МИКРОКЛИМАТА НА САМОЧУВСТВИЕ ЧЕЛОВЕКА

ВВЕДЕНИЕ


Параметры микроклимата оказывают непосредственное влияние на тепловое самочувствие человека и его работоспособность. Например, понижение температуры и повышение скорости движения воздуха способствуют усилению конвективного теплообмена и процесса теплоотдачи при испарении пота, что может привести к переохлаждению организма. Повышение скорости движения воздуха ухудшает самочувствие, так как способствует усилению конвективного теплообмена и процессу теплоотдачи при испарении пота.

При повышении температуры воздуха возникают обратные явления. Исследователями установлено, что при температуре воздуха более 300С работоспособность человека начинает падать. Для человека определены максимальные температуры в зависимости от длительности их воздействия и используемых средств защиты. Существенное значение имеет равномерность температуры. Вертикальный градиент не должен выходить за пределы 5 0 С.

Переносимость человеком температуры, как и его теплоощущение, в значительной мере зависит от влажности и скорости окружающего воздуха. Чем больше относительная влажность, тем меньше испаряется пота в единицу времени и тем быстрее наступает перегрев тела.

Недостаточная влажность воздуха также может оказаться неблагоприятной для человека вследствие интенсивного испарения влаги со слизистых оболочек, их пересыхания и растрескивания, а затем и загрязнение болезнетворными микроорганизмами. Поэтому при длительном пребывании людей в закрытых помещениях рекомендуется ограничиваться относительной влажностью в пределах 30…70%.


РАСЧЕТНЫЕ ПАРАМЕТРЫ ВНУТРЕННЕГО ВОЗДУХА


Параметры внутреннего воздуха должны удовлетворять гигиеническим и технологическим требованиям. Метеорологические условия воздушной среды в рабочей зоне производственных помещений, исходя из гигиенических требований, регламентированы ГОСТ 12.1.005-76 «Воздух рабочей зоны». За рабочую зону принимается пространство высотой до 2 м над уровнем пола или площадки, на которых находятся места постоянного или временного пребывания работающих.

Параметры воздушной среды в обслуживаемой зоне помещений жилых и общественных зданий и вспомогательных зданий промышленных предприятий регламентированы СНиП II-33-75.

Нормы устанавливают оптимальные и допустимые микроклиматические условия в помещениях в зависимости от категории выполняемой работы и избытков явного тепла для холодного, переходного и теплого периодов года.

Оптимальные микроклиматические условия - сочетание параметров микроклимата, которые при длительном и систематическом воздействии на человека обеспечивают сохранение нормального функционального и теплового состояния организма без напряжения реакций терморегуляции.

Допустимые микроклиматическuе условия - сочетания параметров микроклимата, которые при длительном и систематическом воздействии на человека могут вызывать преходящие и быстро нормализующиеся изменения функционального и теплового состояния организма и напряжение реакций терморегуляции, не выходящие за пределы физиологических приспособительных возможностей человека.

В производственных помещениях необходимо периодически контролировать параметры микроклимата. Осуществляют это с помощью ряда контрольно-измерительных приборов (термометров, психрометров, гигрографов, анемометров).

Термометры и психрометры Августа устанавливаются в цехах на стенах или колоннах. При особо точных измерениях применяют портативный аспирационный психрометр Ассмана, шарики термометров которого находятся в потоке воздуха, движущегося с постоянной скоростью.

При контроле параметров микроклимата наряду с объективными данными замеров следует вести учет (запись) субъективных ощущений работающих: теплоощущений, ощущений движения и влажности воздуха, удобства одежды, условий труда и общую личную оценку. Анализ получаемых таким образом данных позволяет разрабатывать меры по созданию метеорологических параметров воздушной среды в производственных помещениях, обеспечивающих комфортность среды

Допустимые и оптимальные параметры микроклиматических условий для работ категории II согласно ГОСТ 12.1.005-76 приведены в табл. 1.

В производственных помещениях, в которых по условиям технологии требуется искусственное поддержание постоянных температуры или температуры и относительной влажности воздуха, допускается во все периоды года принимать температуру и относительную влажность воздуха в пределах оптимальных параметров (+ 20С, но не более 250С) для теплого и холодного периодов года по данной категории работ и характеристике производственного помещения.


Таблица 1.

Вид параметров

Температура воздуха, 0С

Относительная влажность воздуха, %

Холодный и переходный периоды года

Оптимальные

допустимые

18-20

17-19

17-23

15-21

60-40


75

Теплый период года

Оптимальные


Допустимые в помещениях

с избытками явного тепла до 23 Вт/м3

С избыткамиявного тепла более 23 Вт/м3



21-23

20-22

Не более чем на 30С выше средней температуры наружного воздуха в 13 ч самого жаркого месяца, но не более 280С

Не более чем на 5 0С выше средней температуры наружного воздуха в 13 ч самого жаркого месяца, но не более 28 0С

60-40

При 28 0С не более 55; при 27 0С - не более 60;

при 26 ос - не более 65; при 25 0С - не более 70; при 24 0С и ниже - не более 75




В числителе приведены данные для категории работ IIа, в знаменателе - для категории работ IIб.

НАЗНАЧЕНИЕ СИСТЕМ ВЕНТИЛЯЦИИ, КОНДИЦИОНИРОВАНИЯ ВОЗДУХА И ОТОПЛЕНИЯ


Вентиляция предназначена для поддержания в помещении параметров воздушной среды, удовлетворяющих гигиеническим и технологическим требованиям, т. е. обеспечивающих хорошее самочувствие, работоспособность и сохранение здоровья людей, и нормальное протекание технологического процесса.

Под системой вентиляции понимают комплекс устройств, способствующих удалению из помещений вредных выделений и снабжению помещений чистым воздухом с целью поддержания в них состояния воздуха, отвечающего требованиям санитарных норм.

В помещениях различного назначения необходимо поддерживать на постоянном уровне параметры воздушной среды, благоприятные для человека и технологического процесса, независимо от изменения внешних атмосферных условий и режима выделения влаги, вредных паров, газов и др.

Процесс создания и поддержания определенных параметров воздушной среды, не зависящих от внешних параметров воздуха, называется кондиционированием. Кондиционирование является разновидностью вентиляции, высшей ступенью ее развития и отличается более полной обработкой воздуха.

Комплекс технических средств и устройств для приготовления воздуха с заданными параметрами и поддержания в помещении оптимального или заданного состояния воздушной среды (независимо от изменения внешних и внутренних факторов) называется системой кондиционирования воздуха. Система кондиционирования позволяет автоматически поддерживать заданные температуру, влажность, подвижность воздуха, его чистоту, газовый состав, содержание легких и тяжелых ионов, а в ряде случаев и определенное барометрическое давление.

Отопление предназначено для возмещения потерь тепла через строительные ограждения помещений в холодный период года и поддержания в них необходимой температуры воздуха.


ВЛАЖНОСТЬ ВОЗДУХА


Атмосферный воздух состоит из сухой части и некоторого количества водяных паров, поэтому его называют влажным воздухом. В состав сухой части воздуха входят (% по массе): азот 75,5, кислород 23,1, углекислота 0,05 и инертные газы 1,3, а также незначительное количество водорода и озона. С достаточной для технических расчетов точностью можно считать, что влажный воздух подчиняется всем законам смеси идеальных газов.

Состояние воздуха характеризуется давлением, температурой, плотностью, влажностью, влагосодержанием и энтальпией.

Влажность. Абсолютной влажностью влажного воздуха называется отношение массы водяного пара Мп (г) к объему V (м3) влажного воздуха. По закону Дальтона объем влажного воздуха равен объему водяных паров, поэтому абсолютная влажность воздуха в 1000 раз больше плотности водяных паров и может быть записана как



wп = 1000Мп/V = 1000рг,


где wп - абсолютная влажность воздуха, г/м3.

Если воздух насыщать водяными парами, то при определенной температуре наступит предел насыщения. Абсолютная влажность воздуха при полном насыщении называется влагоемкостью и обозначается w нас.

Относительной влажностью воздуха называется отношение абсолютной влажности воздуха к влагоемкости при той же температуре:


φ = wп/wнас = Рп/Рнас.


Используя уравнение состояния газа (2.3), можно представить


Рп = pn/(RnT) и Рнас = рнас/(RпТ) .


Тогда


φ = Рп/ Рнас , (2.7)

Рнас = f(t) . (2.8)


Следовательно, относительную влажность воздуха можно рассматривать как отношение парциальных давлений водяных и насыщенных паров при той же температуре.

Влагосодержанием называется масса водяного пара во влажном воздухе, приходящаяся на единицу массы сухой его части:


d = 1000Мп/ Мв,

где d - влагосодержание, г/кг; м п - масса водяного пара, кг; М в - масса сухой части воздуха, кг.

Учитывая, что объемы пара и сухой части воздуха одинаковы, можно написать


d = 1000рп/рв, (2.9)


Подставив в формулу (2.9) значения РВ (2.4) и (2.5), получим и РП согласно формулам


d = 1000Rв рп /(Rп рв) .


Зная, что Rв = 287 кДж/(кг*К) и Rп = 460 кДж/(кг· К), получаем d = 623 Рп/Рв. Используя выражения (2.1) и (2.7), можно записать


d=623φРнас/(Рб - φРнас) . (2.10)

ШВЕЙНОЕ ПРОИЗВОДСТВО


Рассмотрим процессы обработки в системах кондиционирования воздуха для создания требуемых параметров воздушной среды в рабочей зоне на швейной фабрике, находящейся в г. Москве на 56° с.ш. Рассматриваемый цех расположен на третьем этаже пятиэтажного здания. Его ширина 24 м, длина 48 м, высота 2 м, площадь пола 1152 м2 и объем помещений этажа 4838,4 м3.


Таблица 1 Технологическое оборудование швейного цеха

п/н

Наименование оборудования

Марка или серия

Количество, установленное

N,

кВт

1.

Универсальное

212-115105/Е 112 «Дюркопп»

56

0,27

2.

Универсальное

МО-816-ДФ4/ТОО1 «Джуки»

14

0,27

3.

Универсальное

570-2 ПО «Подольскшвеймаш»

6

0,27

4.

Специальное

397-М ПО «Подольскшвеймаш»

2

0,27

5.

Специальное

ЛН-115 2 SN-413/ МО 16 «Джуки»

4

0,27

6.

Специальное

2001 «Некки»

4

0,27

7.

Специальное

IAN 1405 «Некки»

8

0,27

8.

Специальное

IAN 1611 «Некки»

8

0,27

9.

Специальное

IAN 1441 «Некки»

12

0,27

10.

Специальное

51-А ПО «Подольскшвеймаш»

1

0,27

11.

Выветривание и приутюживание (пресс для клапана кармана)

ПВ-1 «Легмаш»

6

1,6

12.

Выветривание и приутюживание (пресс для клапана кармана)

ПМ-1 «Легмаш»

6

1,0

13.

утюг

УТП-1, 5Э «Легмаш»

10

1,0

14.

фальшпресс

7-96 МОМЗ ЦНИИШП

3

1,0

Отделочная секция

 

15.

пресс

КССУ «Паннония»

2

1,6

16.

пресс

КДФВ «Паннония»

2

1,6

Общее количество одновременно занятых рабочих Пл = 151 человек.

Наружные стены состоят из глиняного кирпича на цементно-песчаном растворе и толщиной 51 см.

Световые проемы выполнены в деревянных раздельных переплетах размером 2,5х4,5 м, c сопротивлением теплопередаче 0,42 м20С/Вт. Hа восток ориентированы остекленные поверхности площадью 78,75 м2 и на запад - 78,75 м2. Общая площадь заполнений световых проемов 157,5 м2.

Характеристика технологического оборудования приведена в табл. 1.

Уравнение теплового баланса для летнего периода года

Общее количество теплопоступлений для теплого периода года




Удельная тепловая нагрузка в швейном цехе составит



Влаговыделения от людей составляет 102 г/ч, или 0,102 кг/ч

Влаговыделения от оборудования ВТО - прессов и утюгов



где Wпр.1 - количество влаги, выделяемой одним прессом (поз. 11,15,16.,

табл. 1), равняется 1,4 кг/ч, и поз. 12,14 - 0,2 кг/ч;

уп.1 - количество влаги, выделяемой одним утюгом, - 0,5 кг/ч;

и  - количество прессов и утюгов.

Общее влаговыделение оборудованием составит

Суммарные влаговыделения в швейном цехе будет



Процесс обработки воздуха в тепловое время года для швейного цеха.

Связующий эффект составит:


- по теплу

- по влаге -


Необходимый воздухообмен определяется по двум вредным выделениям:


По теплу,

По влаге,


Таблица 2 Параметры воздуха для тёплого периода года

Наименование точек

t,°С

φ,%

𝒊, кДж/кг

d, г/кг

Н

22,3

62

49,4

10,6

Ц

27

50

55

10,95

Ц1

27

58

59,7

12,8

К

18,6

90

49,4

12,2


К расчёту принимаем большую величину и определяем объёмное количество воздуха



Кратность воздухообмена по теплу



Так как кратность воздухообмена велика (17,9 1/ч), то перед подачей в цех воздух необходимо охлаждать путем адиабатического увлажнения в оросительной камере кондиционера - процесс НК; точку K получим на пересечении адиабаты 𝒊н - cоnst и относительной влажности φ к = 90%. C параметрами точки K приточный воздух поступает в цех, где поглощает тепло и влагу цеха - процесс КЦ1.



Массовое количество воздуха


по теплукг/ч

по влаге


Объемное количество воздуха


м3/ч


Кратность воздухообмена в швейном цехе


1 /ч,


что отвечает требованиям, предъявляемым к швейным цехам.

Таким образом, принимаем в теплое время года подачу воздуха в цех с предварительным охлаждением в оросительной камере.

Уравнение теплового баланса для холодного периода года

Составим уравнение теплового баланса для холодного периода года. Тепловыделения в холодное время года


= 36941 + 15100 + 46080 = 98121 Bт


Суммарные тепловые потери в швейном цехе определяем c учетом удельной тепловой характеристики здания. B типовых многоэтажных зданиях швейных обувных предприятии удельная тепловая характеристика для цехов, расположенных на последнем этаже, колеблется от 0,24 до 0,35 Вт/мз 0С и для цехов, находящихся между первым и последним этажом, - от 0,14 до 0,2 Вт/мз °С.

Для швейного цеха на третьем этаже пятиэтажного здания примем qп.х = 0,17 Вт/мз °C.



Производственный цех в холодный период характеризуется избыточным количеством тепла



Для холодного времени года принимаем следующие параметры:

- По наружному воздухуtн=26°Сiн= -25,3 кДж/кг;

- По внутреннему воздуху tв = 22°Сφв = 60%;

- Теплоизбытки = 58543,3 Вт

- Влаговыделения W = 36,4 кг/ч

Угловой масштаб вентиляционного процесса в цехе:


3,6 : W = 58543,3 3,6 : 36,4 = 5790 кДж/кг


Производительность вентиляционной системы принимаем как для теплого периода года


Lx = Lm= 50555,5 мз/ч


Вентиляция осуществляется наружным, предварительно обработанным воздухом (процесс происходит без рециркуляции).

Определим влагосодержание воздуха, выходящего из кондиционера и поступающего в цех. Для этого из уравнения



находим связующий эффект по влаге:


0,6 г/кг;


Точку K, характеризующую состояние воздуха, выходящего из кондиционера и поступающего в цех, находим на пересечении влагосодержания этой точки dк= dц -∆dц и процесса изменения состояния воздуха в цехе, проведенного из точки Ц параллельно лучу углового масштаба, K - Ц II ОЕх.


=9,8-0,6=9,2 г/кг


Сравнивая теплосодержание и влагосодержание точек H и K, замечаем необходимость подогрева и увлажнения наружного воздуха для достижения им параметров точки K. Положение конечной точки подогрева наружного воздуха определяется пересечением линии процесса нагрева H-П при dн = dп - cоnst и изоэнтальпического увлажнения П-К при 𝒊к =𝒊п - cоnst.

Расход тепла на подогрев


0,278 = 60666,6 68,3 0,278 = 1151190,1 Вт


где -  = 43-(-25,3) =68,3 кДж/ч

Полученную производительность системы вентиляции по теплому времени года Lm, мз/ч для выбора кондиционера следует увеличить на 10% c учетом расширения производства или возможного наращивания установленной мощности технологического оборудования:


Lконд = Lm + 0,1 Lm = 50555,5 + 0,1 50555,5 = 55611 мз/ч


где Lконд - производительность, по которой будет выбиратьcя кондиционер, мз/ч. По полученной производительности 55611 мз/ч подбираем кондиционер. Принимаем кондиционер КЦКП-63 (табл. 3.)


Таблица 3.

Тип кондиционера

Вентиляционная установка, кПа

Полн. давление

Норм. производит. тыс. м3/ч

n,

мин-1

Электродвигатель

тип

Мощн.

КЦКП-63

ЦЧ-75 N 16

1,6

63

595

4А250S6

45



ЛИТЕРАТУРА

1.В.Н. Талиева, «Вентиляция, отопление и кондиционирование воздуха на текстильных предприятиях», Москва, 1985 год.

2.П.Н. Умняков, «Основы расчёта и прогнозирования теплового комфорта и экологической безопасности на предприятиях текстильной и лёгкой промышленности», Москва, 2003 год.

3.В.А.Кравец, «Безопасность жизнедеятельности в лёгкой промышленности», Москва, 2006 год.


рефераты
© РЕФЕРАТЫ, 2012

рефераты